Lepton Flavor Violating Decays Review & Outlook

T. Mori The University of Tokyo

I mostly focus on: *Experimental* review & outlook on Lepton Flavor Violation (LFV) in *charged leptons*

Topics to Cover

- Why Is Lepton Flavor Violation Interesting?
 - "Tau Processes":
 - ✓ Tau Decays at B Factories
 - ✓ Studies at Hadron Machines
 - LHC, Fixed target experiments
- "Muon Processes":
 - ✓ Muon to Electron Conversion
 - ✓ Muon Decay to Electron and Gamma
 ☑ MEG experiment

Why LFV interesting?

Neutrino LFV --> charged leptons ! Quark FV is generally contaminated by SM. \checkmark Looking for tiny deviations is not easy. © LFV in charged leptons Is NEW PHYSICS. Some experiments are already sensitive to SUSY GUTs, seesaw, and possibly more. ✓ So just find it!

Origin of Lepton Flavor Violation

Origin of Lepton Flavor Violation

Origin of Lepton Flavor Violation

Search for $\mu \rightarrow e\gamma$ decays

already constraining new physics strongly

Experimental reach ~comparable w/ LHC e.g. SO(10) GUT

"Tau Processes"

LFV Tau Decays at B Factories

Special thanks to K.Inami /Nagoya-Belle

B Factory Experiments

F/B asymmetric detectors Good vertex resolution and particle ID ability

Accumulated data: >4.5x10⁸ τ-pairs at Belle, >3.0x10⁸ τ-pairs at BaBar Br~O(10⁻⁸) sensitivity!

Analysis method

- Event Selection
 - Low multiplicity events
 - Separate into hemispheres
 - Signal and tag sides
 - Missing momentum
 - Low missing mass
 - Small Nγ
 - Lepton tag etc.

 $\tau \rightarrow \mu \gamma$

Belle 86.3fb⁻¹ data BaBar 232fb⁻¹ data

Br<3.1x10⁻⁷ at 90%C.L. PRL 92, 171892 (2005). Br<0.68x10⁻⁷ PRL 95, 041802 (2005).

- Background: $\tau \rightarrow \mu \nu \nu + ISR$
 - Small contamination of $\mu\mu$ BG in Δ E>0

$\tau \rightarrow \mu \gamma$: Belle vs BaBar

Belle : $Br < 3.1 \times 10^{-7}$ / 86.3 fb⁻¹ e = 11.1% 2D EML fit with 5 σ signal box N_{signal}= 0, NBG= 54 N_{signal} is constrained to be 0.

BaBar : $\pm 2\sigma$ band

BaBar : Br<0.68x10⁻⁷ / 232 fb⁻¹ e = 9.4%1D EML fit with 2 σ DE band $N_{signal} = -2.2$, NBG= 143 N is allowed to be negative. Negative yield gives lower U.L. than expected.

Br<3.9x10⁻⁷ at 90%C.L. PLB 613, 20 (2005).

Br<1.1x10⁻⁷ PRL 96, 041801 (2006).

• Background: $\tau \rightarrow evv + ISR$

$\tau \rightarrow 31$

Belle: 87.1fb⁻¹, BaBar: 91.5fb⁻¹ PLB 598, 103 (2004), PRL 92, 121801 (2004). Br<(1.1~3.5)x10⁻⁷ at 90%C.L.

Background: low level qq around $\Delta E < 0$, QED(µµ or Bhabha) around $\Delta E > 0$

 $\tau \rightarrow l\pi^0/\eta/\eta'$

Lepton + Pseudoscalar meson

Belle: 154fb⁻¹ Br(τ→μη)<1.5x10⁻⁷ Br < (1.5~10)x10⁻⁷ PLB 622, 218 (2005).

Background μ: ττ + qq e: negligible

Branching Ratios Summary

Br = $O(10^{-6})$ in PDG (by CLEO) Br = $O(10^{-7})$ by Belle and BaBar

Future Prospects

Already >7.5x10⁸ τ-pairs in two B-factories

Backgrounds are starting to limit the sensitivity

Need better μ/π separation Low energy τ -factory? smaller ISR and qq background

Expectation for Super B Factory

The real issue is not "setting limits" but making a discovery!

LHC experiment

Introduction $au
ightarrow 3\mu$ at CMS

CMS au-Sources Problems & Plans

The CMS detector

Well suited for studying $\tau \rightarrow 3\mu$:

- vertexing
- large muon system

Presented at "Flavour at the era of LHC" Feb 2006

Luminosity goals:

2007:	$1{ m fb}^{-1}/{ m y}$ (initial operation)
2009:	$10-30{ m fb}^{-1}/{ m y}$ (low lumi)
2010:	$100-300{ m fb}^{-1}/{ m y}$ (high lumi)

5900

-1

Introduction $au
ightarrow 3 \mu$ at CMS

CMS au-Sources Problems & Plans

LFV in τ -decays at CMS

Possible decay channels@low lumi

- $\tau \rightarrow \mu \gamma$ (seems to be hopeless!)
- $\tau \rightarrow \mu \mu \mu$

At high lumi?

More pile-up

Status and plans of $au
ightarrow 3\mu$ at CMS

• More stringent trigger

Other LFV τ -decays like $\tau \to e\gamma$, $\tau \to eee$, $\tau \to \mu ee$, $\tau \to \mu + hadrons$ probably not detectable at CMS, but this needs to be studied.

Manuel Giffels

au-sources at the LHC		Trigger at CMS (L1)			
$\frac{\text{decay channel}}{W \to \tau \nu_{\tau}}$ $Z \to \tau \tau$	$\frac{N_{\tau}/y}{1.7 \cdot 10^{8}}$ 8.0 \cdot 10^{8} 4.0 \cdot 10^{11} 3.8 \cdot 10^{11} 7.9 \cdot 10^{10} 1.5 \cdot 10^{12}	 single muon p_t > 14 GeV di-muon p_t > 3 GeV 			
$egin{array}{c} B^{\circ} ightarrow au X \ B^{\pm} ightarrow au X \end{array}$		High Level Trigger (HLT)			
$B_s \rightarrow \tau X$ $D_s \rightarrow \tau X$		 single muon p_t > 19GeV di-muon p_t > 7 GeV 			
		<ロ> < 団>			

Q

Needs more study

But looks very tough

Fixed Target Experiments

Mu - Tau Conversion

Look for effective LFV couplings:

- ✓ that are only loosely constrained by tau decays (scalar by $T \rightarrow \mu \Pi \Pi$)
- ✓ that are not constrained
 by tau decays: (qq) = (uc), etc.

Less constrained coupling as large as 0.5fb at 50GeV could yield signal events for ~10¹⁵ muons/year on ~100g/cm² target

Experimental Feasibility at SPS or Neutrino Factory?

Deep Inelastic Conversion

- In SUSY models, possible enhancement due to Higgs mediation
 Constrained by T→µη, 3µ
 ~100ρ events for 10²⁰ muons at 50GeV; more for higher E
- n For above 60GeV, b-quark subprocess dominates and increases the cross-section
- n Gauge-boson mediation strongly constrained by $T \rightarrow \mu \gamma$

Feasibility at ILC or Muon Collider?

Really feasible?

LFV in Kaon Decays

 $K \rightarrow e V$ $R_{K} =$ $K \rightarrow \mu V$

- cancels theoretical uncertainties

- sensitive to LFV couplings if measured at 1% level:

 $\tau \rightarrow e\gamma < 10^{-11}$ $\tau \rightarrow e\eta < 10^{-10}$ ~exceeding the B factory sensitivity

- does not prove LFV if such deviation found

A.Masiero et al. hep-ph/0511289

NA48/2

2003 data:

$2.416 \pm 0.043 \pm 0.024$ cf. SM: 2.472 ± 0.001

@EPS2005, Lisbon

2004 data at least double the statistics.

More data taking?

"Muon Processes"

Muon to Electron

Most sensitive to SUSY GUT and SUSY Seesaw models

✓ $\tau \rightarrow \mu \gamma < 10^{-9}$ for SUSY SO(10)

Predicted branching ratios are within the reach of the next experiments !

Two processes: $\mu \rightarrow e$ conversion vs. $\mu \rightarrow e\gamma$

Clear 2-body kinematics

Good detector system Is essential Use μ^{\star} to avoid capture inside stopping target

Background dominated by Accidental coincidence

- \rightarrow lower μ rate is better
- \rightarrow DC μ beam is best

"surface muon beam": 100% polarized

MEG Experiment

$\mu \rightarrow e$ conversion

 μ^{-} to make a muonic atom

a single electron with E_e = M_{\mu} - δ

Background:

- Decay in orbit $\sim (E_{max} E_e)^5$
- Beam related → next page

$\mu \rightarrow e \text{ conversion}$

Prompt Beam Induced Background

SINDRUM II @PSI

in coincidence with 20nsec Cyclotron RF ~ pion decay in flight

@ PSI

Final result on mu - e conversion on Gold target is being prepared for publication

< 7 x 10⁻¹³ 90%CL

MECO Experiment @BNL

Beam-related background

e.g. radiative pion capture

Proton beam

Proposed Muon Facility at J-PARC

PRISM/PRIME for $\mu^{-} \: N \to e^{-} \: N$

A high-quality beam is essential to carry out $\mu^- N \rightarrow e^- N$ at high sensitivity.

PRISM

- (=Phase Rotated Intense Slow Muon source)
- High muon intensity
 - 10¹¹ 10¹² µ⁻/sec
- Low energy 68 MeV/c
- Pulsed beam
 - Rejection of background coming from proton
- Narrow energy spread (by phase rotation)
 - $\Delta E/E = \pm 0.5 \sim 1.0 \text{ MeV}$
 - thinner muon-stopping target
 - Better e⁻ momentum/energy resolution while keeping high muon stopping efficiency
- Less beam contamination
 - Practically no pion contamination π/μ ~ 10⁻¹⁸

- Year 2003-2007
 - PRISM-FFAG (phase rotator) is under construction
- Phase-I : construction and test of PRISM
- Phase-II : installation of PRISM to high intensity proton machine for mu-e. search.
- GOAL: $B(\mu^- N \to e^- N) < 10^{-18}$

Not Funded

The MEG Experiment

The $\mu \rightarrow e\gamma$ experiment at PSI

The MEG experiment

Approved at Paul Scherrer Institut, Switzerland in 1999

Start physics run in 2006

Initial aim at 10⁻¹³ eventually down to 10⁻¹⁴

3 Techniques that enabled the experiment

LXe scintillation γ -ray detector

COBRA magnet w/ graded B field

Most intensive DC muon beam (10⁸/sec)

590MeV, >1.8mA

$\pi E5 area @PSI$

Presently tuning the beam down to the target position

10⁸ muon stops /sec ~10mm spot size

specially graded B field

low B field at LXe detector

The COBRA Spectrometer

compensation coils

LXe detector prototype

COBRA magnet

Drift Chambers for Positrons

very low material to avoid multiple scattering and positron annihilation in flight

special vernier pads for z measurement

mom resolution 0.7-0.9%

angle 9-12mrad

vertex 2.1-2.5mm

FWHM

/ Timing Counter

Outer layer, read out by PMTs: timing measurement Inner layer, read out with APDs at 90°: z-trigger

• Obtained goal $\sigma_{time^{-40}}$ psec (100 ps FWHM)

Exp. application ^(*)	Counter size (cm) (T x W x L)	Scintillator	РМТ	λ _{att} (cm)	σ _t (meas)	σ _t (exp)
G.D.Agostini	3x 15 x 100	NE114	XP2020	200	120	60
T. Tanimori	3 x 20 x 150	SCSN38	R1332	180	140	110
T. Sugitate	4 x 3.5 x 100	SCSN23	R1828	200	50	53
R.T. Gile	5 x 10 x 280	BC408	XP2020	270	110	137
TOPAZ	4.2 x 13 x 400	BC412	R1828	300	210	240
R. Stroynowski	2 x 3 x 300	SCSN38	XP2020	180	180	420
Belle	4 x 6 x 255	BC408	R6680	250	90	143
MEG	4 x 4 x 90	BC404	R5924	270	38	

Best existing TC

assembly test of scintilator bars

z-measuring fibers

LXe Gamma Ray Detector

LXe Scintillation: High Light Yield, Fast Signal Measures Energy, Time and Position of Gamma Rays 3 ton LXe with ~850 PMTs waveform digitizing to reject pile-up

low temperature 165K, VUV light

A Simulated Event

Detector Performance Verified

100 liter Prototype Detector

Calibration of LXe Detector

- alpha Sources (on wires and wall)
- Proton accelerator ${}^{7}\text{Li}(p, \gamma_{17.6}){}^{8}\text{Be}$ design under way
- Neutron generator ${}^{58}\text{Ni}(n,\gamma_9){}^{59}\text{Ni}$
- Charge exchange reaction (Panofsky) $\pi^- p \rightarrow \pi^0 n$

Detailed background studies are underway

background gamma rays from the drift chamber cable ducts

Study of sources of gamma rays by e⁺ annihilation in flight

MEG Prospects

 Detectors are presently under construction and will be ready later this year (2006).

 Data taking takes ~2 years with muon beam of (1-3) x 10⁷/sec to reach ~1 x 10⁻¹³ sensitivity (90% CL) with ~no background.

Conclusion

LFV is a clean & clear signal of new physics -- TeV physics & beyond (GUT, seesaw)

- \bigcirc The B Factories have greatly improved the τ LFV limits but start to suffer background events.
- The MEG experiment is expected to start running toward the end of this year. Stay tuned.