Inclusive semileptonic B decays: experimental

Elisabetta Barberio University of Melbourne

FPCP: Vancouver April 2006

Standard Model Consistency Tests

 V_{ub} and $V_{cb}~$ provide a test of CP violation in the Standard Model comparing the measurements on the ($\rho,~\eta$) plane

The width of the green ring need to be reduced to match $sin2\beta$ and other measurements

The error on the ring width is dominated by V_{ub}

Goal: Accurate determination of $|V_{ub}|$

Semileptonic B decays

tree level, short distance:

decay properties depend directly on $|V_{cb}|$, $|V_{ub}|$, m_b perturbative regime (α_s^n)

+ long distance:

But quarks are bound by soft gluons: non-perturbative (Λ_{QCD}) long distance interactions of b quark with light quark

Inclusive semileptonic decays

Many theorists love inclusive semileptonic decays

Short distance is calculable Long distance leading order and short distance contribution are cleanly separated and probability to hadronnize is 1

To compare Operator Product Expansion predictions with experiments:

integration over neutrino and lepton phase space provides smearing over the invariant hadronic mass of the final state

Inclusive semileptonic decays

V_{cb} vs V_{ub}

- V_{cb}: most accurate determination from the inclusive decays 2% precision limited by theory error precise Heavy Quarks parameters, tests of OPE
- V_{ub}: 7.5% precision shared between experimental and theoretical errors small rate and large b→clv background space cuts to remove b→clv background which introduce O(1) dependence on non-preturbative b-quark distribution function

V_{cb} from inclusive semileptonic decays

 Γ_{sl} described by Heavy Quark Expansion in $(1/m_b)^n$ and α_s^k

$$\Gamma(\mathsf{B} \to \mathsf{X}_{c} \mathsf{I}_{v}) = \frac{\mathsf{G}_{\mathsf{F}}^{2} \mathsf{m}_{\mathsf{b}}^{5}}{192 \pi^{3}} |\mathsf{V}_{\mathsf{cb}}|^{2} \left[\left[1 + \mathsf{A}_{\mathsf{ew}} \right] \mathsf{A}_{\mathsf{nonpert}} \mathsf{A}_{\mathsf{pert}} \right]$$

non perturbative parameters need to be measured

The expansion depend on $m_{\rm b}$ definition: non-perturbative terms are expansion dependent

Theory error was dominated by $1/m_b^3$ terms and above

Bc moments in semileptonic decays

 X^n are relate to non-perturbative parameters

A Distribution

Another Distribution

moments evaluated on the full lepton spectrum or part of it: $p_{\ell} > p_{min}$ in the B rest frame

higher moments are sensitive to $1/m_b^3$ terms \rightarrow reduce theory error on V_{cb} and HQ parameters

Inclusive SL decays

Difficulty to go from measured shape to true shape: e.g. QED corrections, accessible phase space, resolution, background

moments in semileptonic decays

- E_{ℓ} : lepton energy spectrum in $B \rightarrow X_c \ell v$ (BaBar Belle CLEO Delphi)
- M_X^2 : hadronic mass spectrum in $B \rightarrow X_c \ell v$ (BaBar CDF CLEO Delphi)

Most recent measurements from Belle

from the moments of these distributions we get $V_{\rm cb}$ and HQ parameters

Αργιι 2006

E. Ralbelio

Parameters Extraction

Vcb and HQ parameters

V_{ub} inclusive determination

 $B \rightarrow X_u lv$ rate tree level from OPE \rightarrow corrected for perturbative α_s and non-perturbative $1/m_b$ terms

$$\frac{d\Gamma(B \rightarrow X_{u} lv)}{d(p.s.)} \sim \frac{m_{b}^{5} G_{F}^{2}}{192 \pi^{3}} \left[parton \mod + \sum_{n} C_{n} \left(\frac{\Lambda_{QCD}}{m_{b}} \right) \right]$$
In principle main uncertainty
from m_{b}^{5}

$$BUT.....$$

$$Br(B \rightarrow X_{u} lv) / Br(B \rightarrow X_{c} lv) = 1/50$$
April 2006
E. Barber
$$Barber$$

$$0.8$$

$$0.8$$

$$0.6$$

$$0.7$$

$$0.6$$

$$0.7$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

Shape Function

Limited phase space to reduce the $B \rightarrow X_c lv$ background: OPE doesn't work everywhere in the phase space \rightarrow nonperturbative Shape Function F(K⁺) to extrapolate to the full phase space

Shape Function need to be determined from experimental data

Inclusive $B \rightarrow X_u h$

 $m_u \leftrightarrow m_c \rightarrow exploits$ different kinematics

Signal events have smaller M_X and $P_+ \rightarrow$ Larger E_1 and q^2

Measuring $m_X q^2 P^+$ BABAB Bello

BABAR hep-ex/0507017 Belle PRL 95:241801

Reconstruct all decay products to measure M_X , q^2 or P⁺

fully-reconstructed B meson flavor and momentum known

lepton in the recoil-B
m_{miss} consistent with a neutrino
lepton charge consistent with B flavor
left-over particles belong to X

equal m_B on both sides; $m_{miss} = 0$

S/B ~ 2 Eff~ 0.1%

Measuring Partial Branching Fraction

P₊ BLNP PRL93:221802

		ΔB (10⁻⁴)
BABAR 211fb ⁻¹	$m_X < 1.7, q^2 > 8$	$\textbf{8.7} \pm \textbf{0.9}_{stat} \pm \textbf{0.9}_{sys}$
Belle 253fb ⁻¹	<i>m_X</i> < 1.7	$12.4 \pm 1.1_{stat} \pm 1.0_{sys}$
first measurement	$m_X < 1.7, q^2 > 8$	$\textbf{8.4} \pm \textbf{0.8}_{stat} \pm \textbf{1.0}_{sys}$
of P_{+} spectrum	<i>P</i> ₊ < 0.66	$11.0 \pm 1.0_{stat} \pm 1.6_{sys}$

Turning ΔB into $|V_{ub}|$

Dealing with Shape Function

Solution \rightarrow use directly the γ spectrum:

$$\int^{x_i^{cut}} dx \frac{d\Gamma(B \to X_u l\overline{v})}{dx_i} = \int dE_{\gamma} W(\underbrace{x_{i,}^{cut}}_{i, \nu} E_{\gamma}) \frac{d\Gamma(B \to X_s \gamma)}{dE_{\gamma}}$$

E Barberio

Inclusive $|V_{ub}|$: BLNP framework

Theory Errors

Quark-hadron duality is not considered (cut dependent) • b → clv and b → sγ data fit well HQ predictions

Weak annihilation 🗲 ± 1.9% error

- Expected to be <2% of the total rate
- $\Gamma_{w.a.}/\Gamma(b \rightarrow u) < 7.4 \%$ from CLEO

HQ parameters → ± 4.1% mainly m_b; kinematics cuts depend on m_b!

Sub-leading shape function → ± 3.8% dominated by the lepton endpoint measurements

Inclusive |V_{ub}|: DGE framework

Dressed Gluon Exponentiation (DGE)

on-shell b-quark calculation converted into hadronic variables used as approximation to the meson decay spectrum

$$|V_{ub}|^{\text{DGE}} = (4.41 \pm 0.20 \pm 0.20) \ 10^{-3}$$

Still digesting the method
GE theory $\rightarrow \pm 2.9\%$ matching scheme method and scale
 $m_b(MS) \rightarrow \pm 1.3\%$ on event fraction $m_b(MS)=4.20\pm0.04$ GeV
 $\alpha_s \rightarrow \pm 1.0\%$ on event fraction

total $\Gamma_{SL} \rightarrow \pm 3.0 \%$

V_{ub} without Shape Function Babar Based on Leibovich, Low, $\left| \Gamma(\mathbf{B} \rightarrow \mathbf{X}_{u} \mathbf{l} \mathbf{u}) = \frac{\left| \mathbf{V}_{ub} \right|^{2}}{\left| \mathbf{V}_{u} \right|^{2}} \int \mathbf{W}(\mathbf{E}_{\gamma}) \frac{d\Gamma(\mathbf{B} \rightarrow \mathbf{X}_{s} \gamma)}{d\mathbf{E}_{\gamma}} d\mathbf{E}_{\gamma} \right|$ Rothstein, PLB 486:86 First proposal by Neubert $|\mathbf{V}_{\mathsf{ts}}| \sim |\mathbf{V}_{\mathsf{cb}}| + O(1)$ Weight function 400-Events / Bin $V_{ub} | \times 10^{-2}$ Data 30b) • Data a) 8 -Full $b \rightarrow u l v$ Babar 300 $b \rightarrow u l v$ Other 20 -Rate 200 10-Babar 100 0 Weighting technique -10stable down to 1.4 GeV 2 0 0 2 m, cut³ $m_x [GeV/c^2]$ $m_{\rm X}$ [GeV/c²] OPE $m_x < 2.50$ GeV LLR m_x<1.67 GeV $|V_{ub}| = (3.38 \pm 0.70_{stat} \pm 0.30_{svs} \pm 0.10_{theo}) 10^{-3}$ $|V_{ub}| = (4.43 \pm 0.30_{stat} \pm 0.25_{svs} \pm 0.29_{theo})10^{-1}$

|V_{ub}|: inclusive vs exclusive

V_{ub} : CKM consistency

Most probable value of V_{ub} from measurements of other **CKM** parameters Standard Model predictions with q Δms measurement 0.6 (thank to Pierini) 5 0.5 4 V_{ub} from exclusive 3 measurements 0.3 2 0.2 V_{ub} from inclusive measurements 0.1 0.003 0.0035 0.004 0.0045 0.005 ub

Conclusions

 $b \rightarrow c l v$

V_{cb} 2% error dominated by theory, m_b @1% (kinetic and Y(1S) schemes), m_c @5% (kinetic scheme)

but how well do we know the $B \rightarrow X_c Iv$ spectrum?

b→ ulv

 V_{ub} ~7.4% error shared between theoretical and experimental inclusive vs exclusive less than 1.4 σ difference, depending on the inclusive extracting method We have now different methods to extract V_{ub}

 $|V_{ub}| \otimes 5\%$ possible? Improve knowledge of $B \rightarrow X_c Iv$, $B \rightarrow X_u Iv$ and more work on the theoretical error

Inclusive $|V_{ub}|$: comparisons

HQ parameters from cl_{v} and sg

M_{x} unfolded spectrum for $B \rightarrow X_{c} \mid v$

photon energy spectrum

 E_{γ} : photon energy spectrum in $B \rightarrow s\gamma$ (BaBar Belle CLEO Delphi)

