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Lattice QCD calculations have made 
terrific progress in recent years.

• Simple quantities agree with experiment to a few %.

• A few quantities have been predicted ahead of 
experiment.

• Lattice calculations are playing an increasingly 
essential role in analysis of experiment.
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Quantities that used to agree 
decently, ~10%, in the 
quenched approximation...

Gold-plated quantities.

Staggered fermions,
the least CPU-intensive.

... agree to a few % in recent 
unquenched calculations.
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“Gold-plated quantities” of 
lattice QCD
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Quantities that are easiest for theory and experiment to 
both get right.

Stable particle, one-hadron processes.  Especially mesons.

More complicated methods are required for multihadron 
processes:  
- unstable particles are messy to interpret, 
- multihadron final states are different in Euclidean and 
Minkowski space.
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Three families of lattice fermions

• Staggered/naive

• Good chiral behavior (can get to light quark masses), but fermion 
doubling introduces theoretical complications.  Cheap.

• Wilson/clover

• No fermion doubling but horrible chiral behavior.

• Overlap/domain wall

• Nice chiral behavior at the expense of adding a fifth space-time 
dimension.  Expensive.
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The various methods have wildly incommensurate virtues and 
defects.
Staggered fermion calculations are the cheapest and currently 
most advanced phenomenologically.
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Progress, but also need and opportunity
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KK mixing

BB mixing

BsBs mixing 

_

_

_

For some quantities, only lattice calculations can unlock the 
complete potential of experimental measurements. 

Lattice QCD needs 
to deliver these 
quantities reliably.  
Or else.

Bucholz, FPCP 2006
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In this talk...

• Concentrate on lattice CKM physics phenomenology.

• Unquenched, 2+1 light flavors where possible.

• Concentrate on gold-plated quantities.

• Other interesting things (order of increasing difficulty)

• <B|O|B> expectation values for HQET, etc. (Doable now.)

• Kππ.  (Doable now, but harder.  People are trying.)

• Broad unstable states.  (Being done now, but will be hard to get right.)

• Bππ.   (Nobody’s trying.)
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Thanks, Steve Gottlieb, Richard Hill, Uli Nierste, Masataka Okamoto.
See Okamoto review at Lattice 2005.
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Outline

• Introduction

• CKM matrix elements

• Decay constants

• MM mixing 

• Semileptonic decays

• Outlook
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CKM matrix elements
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“CKM matrix with lattice QCD” V
LQCD
CKM

For each CKM element, there exists hadronic processes whose amplitudes

can be reliably calculated from LQCD —

gold-plated quantities: at most one hadron in initial/final states.





Vud Vus Vub

!→ l" K → !l" B→ !l"

Vcd Vcs Vcb

D→ !l" D→ Kl" B→D(∗)l"

D→ l" Ds → l"

Vtd Vts Vtb

〈Bd|Bd〉 〈Bs|Bs〉





〈B|B〉,〈K|K〉,sin (2#) =⇒ {$,%}

Given recent developments (unquenching, improved actions, machines etc.),

we are now in a good position for the full determination of V
LQCD
CKM .

All of the CKM matrix elements except Vtb can be determined 
from one of lattice QCD’s golden quantities.

For some, like Vtd and Vts, 
lattice calculations are the 
only road to accurate 
determinations.



Paul Mackenzie    Flavor Physics and CP Violation, April 9-12, 2006

• Tests lattice’s ablility to accurately calculate 
amplitudes by producing new measurements of CKM 
independent quantities that can be checked with the 
lattice, such as                    .

• With good lattice calculations, measures CKM charm 
matrix elements: Vcs and Vcd.
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fD, fDs

CLEO-c charm physics and the lattice:

Leptonic/Semileptonic ratio

CKM factor |Vcq| canceled in the ratio ( =⇒ a good test of LQCD):

Rcd ≡

√
B(D→ l!)

B(D→ "l!)
#

fD

fD→!
+ (0)

· |Vcd|/

|Vcd|/

LQCD(n f = 2+1), FNAL/MILC
Rcd = 0.22(2)

Exp’t, CLEO-c’05 etc

Rcd = 0.25(2)

200 250

f
D
 [MeV]

2 3 4 5

Br(D!>!l")x10
3

0.20 0.25

R
cd

Exp’t

LQCD

CP!PACS

PDG’04
(CLEO’05)

(FNAL/MILC)

Agree with Exp’t for D physics. =⇒ credibility for B physics
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fD, fDs
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CLEO error dominated by statistics,
will be reduced with full data set.

Lattice error dominated by discretization error
(done on a single lattice spacing).
Will be reduced by in progress calculations on multiple 
lattice spacings.

D→ l! ( fD) results

FNAL/MILC, hep-lat/0506030

(Simone’s poster) n f = 2+1, stag light
S"PT fit to Partially Quenched data
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Agree with exp’t for fD =⇒ credibility for fB

Ds → l! ( fDs) results
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CP-PACS, preliminary

(Kuramashi’s talk)

n f = 2, clover light + Tsukuba heavy
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n f=0 results with Overlap/DW:(Dong’s talk / Chiu et al, hep-ph/0506266)

CLEO-c will measure fDs .
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CLEO-c will measure fDs . Compare with CLEO-c

Fermilab/MILC, 05.  nf=2+1 staggered light quarks.
Fermilab heavy quarks.

CP-PACS, 05.  nf=2 clover light quark.
“RHQ” heavy quarks.

D→ l! ( fD) results
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(Simone’s poster) n f = 2+1, stag light
S"PT fit to Partially Quenched data
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CLEO-c.  R. Poling, FPCP 2006.

Assumes canonical Vcd.
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fB, fBs

12

fB(s) result (cont’d)
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=

• reasonable agreement with previous averages for fB and fBs
• good agreement and better accuracy for the ratio fBs/ fB
(smaller !fit error with staggered quarks)

• !-log effect included in Hashimoto’s ICHEP’04 avg

fB(s) result (cont’d)
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• good agreement and better accuracy for the ratio fBs/ fB
(smaller !fit error with staggered quarks)

• !-log effect included in Hashimoto’s ICHEP’04 avg

fB(s) result

fB(s) is similar to fD, for which we have seen an agreement with Exp’t

HPQCD, hep-lat/0507015 (Shigemitsu&Allison’s talks)

n f = 2+1 (MILC conf), impr stag light + NRQCD heavy
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PT error cancel =⇒ total 3%

HPQCD 05.  nf=2+1 staggered light quarks,
NRQCD heavy quarks. 

Dominant uncertainty in fB: 
O(α2) perturbation theory.

fB(s) result

fB(s) is similar to fD, for which we have seen an agreement with Exp’t

HPQCD, hep-lat/0507015 (Shigemitsu&Allison’s talks)

n f = 2+1 (MILC conf), impr stag light + NRQCD heavy
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Dominant uncertainty in fBs/fB: 
Statistics and chiral extrapolation.

Okamoto, Lattice 2005
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fB, fBs
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Constraints on Physics Parameters
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Ikado,
FPCP 2006CKM constraint is fit using 

B→τν/ΔMd.
(fB drops out.)

Much tighter constraints can be 
obtained by incorporating lattice fB 

and BB  (<15%).
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fK, fπ
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Update on pi and K Physics C. Bernard

As in Ref. [1] we fit the partially quenched lattice data to S!PT forms [4]. The addition of

new runs allows us (sometimes forces us) to change some details of the fits. To determine LO and

NLO chiral parameters we fit only to the low quark-mass region. The cut on valence quark mass

is the same as before: amx + amy ≤ 0.021 ≈ 0.5ams (coarse) and amx + amy ≤ 0.017 ≈ 0.6ams

(fine). We now have enough data to cut on sea-quark masses, too: We remove the 0.03/0.05,

0.02/0.05, and 0.03/0.03 sets for this fit. Because statistical errors are so small, (0.1% to 0.4% for

decay constants, 0.1% to 0.7% for squared meson masses), we still require NNLO analytic terms

in addition to complete NLO forms to get good fits. Such joint fits to decay constants and masses,

including both coarse and fine lattices, have 26 free parameters:

• 2 LO parameters: f and µ (decay constant and condensate at tree-level).

• 8 NLO parameters: 4 physical and 2 taste-violating analytic terms, 2 taste-violating hairpins.

• 10 physical, NNLO analytic parameters.

• 6 tightly constrained parameters (prior width = 0.025): give variation of 2 LO and 4 NLO

physical parameters with lattice spacing.

For interpolation around ms, we must include higher quark masses. Once the LO and NLO

parameters are determined, we fix them (up to statistical errors) and fit to all sea mass sets and wider

ranges of valence masses. For central values we choose the range amx + amy ≤ 0.055 ≈ 1.4ms

coarse, and amx+amy ≤ 0.0353 ≈ 1.3ms fine. This fit is called “Fit C.” For systematic error tests,

the range is widened to amx + amy ≤ 0.10 ≈ 2.5ms coarse, and amx + amy ≤ 0.062 ≈ 2.2ms fine.

With either of these choices, we need to add in the NNNLO analytic terms (18 parameters, cubic

in quark masses for f" and M
2
"/(mx+my)) to get good fits.

With our old data set, m′
s only changed with a, and m

′
s was usually significantly larger than m̂

′,

so the sea quark mass dependence and a dependence were difficult to disentangle. The new data,

which includes coarse lattices with am′
s = 0.03 in addition to the previous value am′

s = 0.05, gives

better control of the sea quark mass dependence and smaller a dependence of the LO, NLO, and

NNLO parameters. Including the NNNLO terms and the a dependence of the NNLO terms gives

28 parameters more than the low-mass fits described above, for a total of 56 parameters. Twelve of

these (LO, LO a dependence, and NLO parameters) are tightly constrained from the low-mass fits.

Figure 1 shows Fit C results for f" and fK . This fit has !
2/d.o.f. = 0.99 for 556 degrees

of freedom (confidence level CL=0.59). In each plot, the maroon line is the “prediction” for the

0.0031/.031 fine run based on a second fit that leaves out that run; it should be compared with the

solid black line that comes from Fit C. Since the time of the conference, we have accumulated about

25% more 0.0031/.031 configurations, and the effect of removing or including this run in the fit has

decreased. Given that the CL decreases when the run is removed, we no longer see any reason to

consider omitting the run. We note that the 0.0031/.031 run is still only about half finished, so there

will probably be further noticeable shifts. In the fK plot, two “experimental” points (shifted slightly

to the left for clarity) are shown. Both points are based on the measured leptonic (K→ !#) rate, but

×+ assumes the PDG valueVus = 0.2200(26) [11]; while× assumes the results of recent experiments
Vus = 0.2262(23) [12]. Both these values of Vus come from experimental determinations of the

semileptonic (K → "!#) rate and non-lattice theory for form factors.

Our preliminary results for decay constants are:

f" = 128.1±0.5±2.8 MeV , fK = 153.5±0.5±2.9 MeV , fK/ f" = 1.198(3)(+16− 5) ,
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NLO chiral parameters we fit only to the low quark-mass region. The cut on valence quark mass
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(fine). We now have enough data to cut on sea-quark masses, too: We remove the 0.03/0.05,

0.02/0.05, and 0.03/0.03 sets for this fit. Because statistical errors are so small, (0.1% to 0.4% for

decay constants, 0.1% to 0.7% for squared meson masses), we still require NNLO analytic terms

in addition to complete NLO forms to get good fits. Such joint fits to decay constants and masses,
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• 2 LO parameters: f and µ (decay constant and condensate at tree-level).
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parameters are determined, we fix them (up to statistical errors) and fit to all sea mass sets and wider

ranges of valence masses. For central values we choose the range amx + amy ≤ 0.055 ≈ 1.4ms

coarse, and amx+amy ≤ 0.0353 ≈ 1.3ms fine. This fit is called “Fit C.” For systematic error tests,

the range is widened to amx + amy ≤ 0.10 ≈ 2.5ms coarse, and amx + amy ≤ 0.062 ≈ 2.2ms fine.
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s = 0.03 in addition to the previous value am′
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better control of the sea quark mass dependence and smaller a dependence of the LO, NLO, and

NNLO parameters. Including the NNNLO terms and the a dependence of the NNLO terms gives

28 parameters more than the low-mass fits described above, for a total of 56 parameters. Twelve of

these (LO, LO a dependence, and NLO parameters) are tightly constrained from the low-mass fits.

Figure 1 shows Fit C results for f" and fK . This fit has !
2/d.o.f. = 0.99 for 556 degrees

of freedom (confidence level CL=0.59). In each plot, the maroon line is the “prediction” for the

0.0031/.031 fine run based on a second fit that leaves out that run; it should be compared with the

solid black line that comes from Fit C. Since the time of the conference, we have accumulated about

25% more 0.0031/.031 configurations, and the effect of removing or including this run in the fit has

decreased. Given that the CL decreases when the run is removed, we no longer see any reason to

consider omitting the run. We note that the 0.0031/.031 run is still only about half finished, so there

will probably be further noticeable shifts. In the fK plot, two “experimental” points (shifted slightly

to the left for clarity) are shown. Both points are based on the measured leptonic (K→ !#) rate, but

×+ assumes the PDG valueVus = 0.2200(26) [11]; while× assumes the results of recent experiments
Vus = 0.2262(23) [12]. Both these values of Vus come from experimental determinations of the
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Our preliminary results for decay constants are:

f" = 128.1±0.5±2.8 MeV , fK = 153.5±0.5±2.9 MeV , fK/ f" = 1.198(3)(+16− 5) ,

MILC 05.  nf=2+1 staggered.
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Update on pi and K Physics C. Bernard

Figure 1: Left: Comparison of Fit C to partially quenched f! data. Extrapolation to continuum, setting

m′
s =ms, and going to full QCD gives the red line. Red + shows the final result after extrapolationmx,my→

m̂. The maroon line (just barely visible above the black line) is the prediction for the 0.0031/0.031 fine run

(black squares) based on the other data. Right: Same as left, but for fK . The short green continuation of the

red line keeps light sea masses fixed at the average physical value m̂ and extrapolatesmx→mu.

where the errors are from statistics and lattice systematics. These results are consistent with our

previous answers [1], with slightly smaller errors. The current Nf = 3 results for quark masses are

little changed from those in Refs. [1, 13].

We extract Vus from our fK/ f! result. This is probably safer than using fK itself, because the

ratio is largely free of scale errors. We obtain |Vus| = 0.2242(+11−31), which is consistent with world-

average values, with comparably sized errors. From Fig. 1, one can deduce that using fK alone

would result in a somewhat higher value of Vus. The difference comes from the fact that our f!

result is slightly low compared with experiment, although consistent within errors. Runs planned

for the near future, as well as those now in progress, should allow a further reduction in the errors.

We now turn to the quenched data. We fit to the same valence mass range as the Nf = 3 Fit C.

Again, terms through NNNLO are needed; joint fits to decay constants and masses, including both

coarse and fine lattices, have 34 free parameters:

• 3 LO parameters: f , µ , and the quenched chiral parameter " [14]. We consider " to be “LO”

because its effects are not suppressed by powers of quark mass.

• 7 NLO parameters: 2 physical and 2 taste-violating analytic terms, 2 taste-violating hairpins,

and the quenched chiral parameter # [14].

• 4 physical, NNLO analytic parameters.

• 4 physical, NNNLO analytic parameters.

• 14 tightly constrained parameters (prior width = 0.04): give variation of 2 LO, 4 NLO, 4

NNLO, and 4 NNNLO physical parameters with lattice spacing.

• 2 parameters to allow the r1 scale on the coarse and fine lattices to vary within 1$ .

The parameter " multiplies a function of the taste-singlet mass, which is large (>∼500MeV) on
coarse lattices because of taste splitting. The coarse lattices are therefore insensitive to quenched

Chiral extrapolation of fK.

Leptonic decay experiment + “old” Vus.

Leptonic decay experiment + “new” Vus.
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Update on pi and K Physics C. Bernard

Figure 1: Left: Comparison of Fit C to partially quenched f! data. Extrapolation to continuum, setting

m′
s =ms, and going to full QCD gives the red line. Red + shows the final result after extrapolationmx,my→

m̂. The maroon line (just barely visible above the black line) is the prediction for the 0.0031/0.031 fine run

(black squares) based on the other data. Right: Same as left, but for fK . The short green continuation of the

red line keeps light sea masses fixed at the average physical value m̂ and extrapolatesmx→mu.

where the errors are from statistics and lattice systematics. These results are consistent with our

previous answers [1], with slightly smaller errors. The current Nf = 3 results for quark masses are

little changed from those in Refs. [1, 13].

We extract Vus from our fK/ f! result. This is probably safer than using fK itself, because the

ratio is largely free of scale errors. We obtain |Vus| = 0.2242(+11−31), which is consistent with world-

average values, with comparably sized errors. From Fig. 1, one can deduce that using fK alone

would result in a somewhat higher value of Vus. The difference comes from the fact that our f!

result is slightly low compared with experiment, although consistent within errors. Runs planned

for the near future, as well as those now in progress, should allow a further reduction in the errors.

We now turn to the quenched data. We fit to the same valence mass range as the Nf = 3 Fit C.

Again, terms through NNNLO are needed; joint fits to decay constants and masses, including both

coarse and fine lattices, have 34 free parameters:

• 3 LO parameters: f , µ , and the quenched chiral parameter " [14]. We consider " to be “LO”

because its effects are not suppressed by powers of quark mass.

• 7 NLO parameters: 2 physical and 2 taste-violating analytic terms, 2 taste-violating hairpins,

and the quenched chiral parameter # [14].

• 4 physical, NNLO analytic parameters.

• 4 physical, NNNLO analytic parameters.

• 14 tightly constrained parameters (prior width = 0.04): give variation of 2 LO, 4 NLO, 4

NNLO, and 4 NNNLO physical parameters with lattice spacing.

• 2 parameters to allow the r1 scale on the coarse and fine lattices to vary within 1$ .

The parameter " multiplies a function of the taste-singlet mass, which is large (>∼500MeV) on
coarse lattices because of taste splitting. The coarse lattices are therefore insensitive to quenched

(cf. 0.2200(26) (old); 
      0.2262(23) (new).)

Light quark masses essential.
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R. Van de Water  /16BK with domain-wall valence quarks and 2+1 flavors of staggered sea quarks

BK and the unitarity triangle

Size of indirect CP-violation in the neutral kaon system (!K) + BK          constraint 

on apex of CKM unitarity triangle:

!K  well-known experimentally         !dominant error from uncertainty in BK

Likely that new physics would produce 

additional CP violating phases;  these would 

manifest themselves as apparent inconsistencies  

between measurements of quantities that 

should be identical in the Standard Model

     Precise determination of BK will help 

constrain physics beyond the SM

3

!

 "

 "

 A=|Vcb| known to ~2% and enters the above expression as the 4th power   

      !  Must reduce error in BK to below that from |Vcb|4, which is ~10% 

      !  Ultimately need BK to 5% accuracy for real phenomenological impact

How precise? 

|εK | = CεBKA2η{−η1S0(xc)(1 − λ2/2) + η3S0(xc, xt) + η2S0(xt)A
2λ2(1 − ρ)}

Benchmark Calculation

• JLQCD (Aoki et al, 1997)

– staggered fermions

– 7 lattice spacings
a ∼ 0.24 − 0.04fm

– La ∼ 2.3 − 2.5fm generally
volume dependance studies at
two lattice spacings; La ∼ 1.8 −
3.1fm

!0.2 0.0 0.2 0.4 0.6 0.8

m
!
a

0.5

0.6

0.7

0.8

0.9

B
K
(NDR, 2GeV) vs. m

!
a

q
*
=1/a, 3!loop coupling, 5 points

non!invariant

invariant

• Two lines values are from differen’t operator definitions; should be same
to order in perturbation theory and lattice spacing they worked...

– O(a2) (lattice spacing errors) and O(α2) (mixing errors) terms in-
cluded in the fit

∗ Discretisation errors large; O(α2) also large and badly constrained.
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Progress in Kaon Phenomenology from Lattice QCD Chris Dawson

In the past year there has been several new or updated results in the quenched approximation,

together with a few preliminary results using dynamical fermions. While the quenched approxima-

tion is uncontrolled and so has an associated systematic error which is difficult to estimate with any

confidence, it is useful for a comparison of various approaches to the calculation of BK . For that

reason I will first start with a review of the status of BK in the quenched approximation, comparing

the advantages and disadvantages of the various lattice actions, and discussing what we know of

the common systematics such as finite volume and mass extrapolations.

3.1 Quenched Results

3.1.1 Staggered Fermions: broken flavour symmetry

Staggered Fermions, break both flavour symmetry and chiral symmetry, although in the lat-

ter case a residual U(1) subgroup of this symmetry remains unbroken at finite lattice spacing.

Even choosing the external states to be the mesons corresponding to this exact symmetry (the so-

called lattice goldstone-boson), the main challenge of calculating BK on the lattice using staggered

fermions is that of resolving the operator mixing problem. If only symmetry arguments are used

to constrain the various operators that could mix, then the breaking of flavour symmetry would

lead to a huge number of such operators (a rough estimate is that there are O(164)). However,

when working to a given order in perturbation theory, the problem becomes much more tractable.

The standard (one-loop) calculation of the renormalisation factors involves a mixing between four

different operators.

The most careful application of this procedure using naive staggered quarks is that due to Aoki

et al [21]. This work has long been viewed as the benchmark quenched calculation, as 7 different

lattice spacings were used (ranging from 0.025fm to 0.04fm) for lattice volumes ∼ (2.5fm)4. At

two of these lattice spacing a finite volume study was made. The results of this study are shown in

the left-hand panel of Figure 5 (taken from [21]), plotted versus the rho-meson mass in lattice units.

The two sets of points are from different operator definitions: one gauge invariant, one not. These

should be equivalent up to errors due to the truncation of perturbation theory in the calculation of

the mixing/renormalisation factors (O(!2)) and lattice artifact effects (O(a2)). The fact that this is

not the case is clear evidence that such effects are large, and the final results of

BK(NDR,2GeV) = 0.628(42) (3.6)

is gained from a fit which includes both O(a2) and O(!2) terms and is constrained to give the same

continuum limit for both methods. As may be noted the final quoted error is much larger than

the statistical errors on the individual points, this is due to the O(! 2) terms being both large and

badly constrained2; TheO(a2) are large, but statistically well resolved. In the following I will often

compare newer results to these two data-sets, referred to as staggered one (invariant) and staggered

two (non-invariant).

3.1.2 Improved Staggered Fermions

In recent years there has been much success using the approach of improved staggered fermions

[22, 23]. While such improvements do not improved either the number of operators which maymix,

2this seems to because the relevant coeffi cient in the fi t is mainly constrained by the upwards "hook" of the invariant

data, only noticeable at small lattice spacing.

007 / 9007/9
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Benchmark calculation for years was  
JLQCD 97, staggered fermions.
Quenched!

Tons of CPU power to get to light 
quark masses.

Now a field of hot activity

Lots of investigations of new methods.

At least two 2+1 programs started

See Dawson, Lattice 2005.
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R. Van de Water  /16BK with domain-wall valence quarks and 2+1 flavors of staggered sea quarks

BK and the unitarity triangle

Size of indirect CP-violation in the neutral kaon system (!K) + BK          constraint 

on apex of CKM unitarity triangle:

!K  well-known experimentally         !dominant error from uncertainty in BK

Likely that new physics would produce 

additional CP violating phases;  these would 

manifest themselves as apparent inconsistencies  

between measurements of quantities that 

should be identical in the Standard Model

     Precise determination of BK will help 

constrain physics beyond the SM

3

!

 "

 "

 A=|Vcb| known to ~2% and enters the above expression as the 4th power   

      !  Must reduce error in BK to below that from |Vcb|4, which is ~10% 

      !  Ultimately need BK to 5% accuracy for real phenomenological impact

How precise? 

|εK | = CεBKA2η{−η1S0(xc)(1 − λ2/2) + η3S0(xc, xt) + η2S0(xt)A
2λ2(1 − ρ)}

BB(s)

No new/updated unquenched BB(s) result this year.

(n f = 0 study with Overlap light, Blossier’s talk)

Best result: JLQCD’03

n f = 2, clover light + NRQCD heavy

B(mb) = 0.836(27)(+56−62) , B̂s/B̂= 1.017(16)(+56−17)

⇓

With HPQCD’s f
n f=2+1
B(s)

,

fB

√
B̂B = 244(26)MeV, =⇒ |Vtd|Lat05 = 7.4(0.8)×10−3)

(|Vtd|PDG04 = 8.3(1.6)×10−3)

fBs/ fB

√
B̂Bs/B̂B = 1.210(+47−35) !(|Vtd|/|Vts|) = 3−4% with forthcoming "MBs

JLQCD, 03
nf=2 clover light,
NRQCD heavy quarks.

Combine with HPQCD fB to obtain:

BB(s)

No new/updated unquenched BB(s) result this year.

(n f = 0 study with Overlap light, Blossier’s talk)

Best result: JLQCD’03

n f = 2, clover light + NRQCD heavy

B(mb) = 0.836(27)(+56−62) , B̂s/B̂= 1.017(16)(+56−17)

⇓

With HPQCD’s f
n f=2+1
B(s)

,

fB

√
B̂B = 244(26)MeV, =⇒ |Vtd|Lat05 = 7.4(0.8)×10−3)

(|Vtd|PDG04 = 8.3(1.6)×10−3)

fBs/ fB

√
B̂Bs/B̂B = 1.210(+47−35) !(|Vtd|/|Vts|) = 3−4% with forthcoming "MBs

BB(s)

No new/updated unquenched BB(s) result this year.

(n f = 0 study with Overlap light, Blossier’s talk)

Best result: JLQCD’03

n f = 2, clover light + NRQCD heavy

B(mb) = 0.836(27)(+56−62) , B̂s/B̂= 1.017(16)(+56−17)

⇓

With HPQCD’s f
n f=2+1
B(s)

,

fB

√
B̂B = 244(26)MeV, =⇒ |Vtd|Lat05 = 7.4(0.8)×10−3)

(|Vtd|PDG04 = 8.3(1.6)×10−3)

fBs/ fB

√
B̂Bs/B̂B = 1.210(+47−35) !(|Vtd|/|Vts|) = 3−4% with forthcoming "MBs

2. Mass difference ∆m

∆m is measured from the B−B oscillations, which are governed by cos(∆mt):

A0(t) =
Γ(B(t) → f) − Γ(B(t) → f)
Γ(B(t) → f) + Γ(B(t) → f)

=
cos(∆m t)

cosh(∆Γ t/2)

Eq. (1.81) from B physics at the Tevatron

Local four-quark operator:

Q = qLγνbL qLγνbL

Theoretical uncertainty dominated by matrix element:

〈B0 |Q|B0 〉 =
2
3
m2

Bs
f2

Bs
B̂

b

q

q

b

Ulrich Nierste B−B mixing: mass and width differences and CP violation page 8

(1) B− B̄mixing

!MBd(s) " BBd(s) f
2

Bd(s)
|V ∗
tb
Vtd(s)|2

lattice:

〈B̄0|(b̄q)V−A(b̄q)V−A|B0〉 " BBq f
2

Bq

(2) K− K̄ mixing

|#K | = BK $[(1−%)c1 + c2]

lattice:

〈K̄0|O!S=2|K0〉 " BK f
2

K

!0.4 !0.2 0 0.2 0.4 0.6 0.8 1

!
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!0.2
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(1) B− B̄mixing

!MBd(s) " BBd(s) f
2

Bd(s)
|V ∗
tb
Vtd(s)|2

lattice:

〈B̄0|(b̄q)V−A(b̄q)V−A|B0〉 " BBq f
2

Bq

(2) K− K̄ mixing

|#K | = BK $[(1−%)c1 + c2]

lattice:

〈K̄0|O!S=2|K0〉 " BK f
2

K
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D0:  17<Δms<21 ps-1 @90% CL; 2.3σ
R. Van de Water  /16BK with domain-wall valence quarks and 2+1 flavors of staggered sea quarks

BK and the unitarity triangle

Size of indirect CP-violation in the neutral kaon system (!K) + BK          constraint 

on apex of CKM unitarity triangle:

!K  well-known experimentally         !dominant error from uncertainty in BK

Likely that new physics would produce 

additional CP violating phases;  these would 

manifest themselves as apparent inconsistencies  

between measurements of quantities that 

should be identical in the Standard Model

     Precise determination of BK will help 

constrain physics beyond the SM

3

!

 "

 "

 A=|Vcb| known to ~2% and enters the above expression as the 4th power   

      !  Must reduce error in BK to below that from |Vcb|4, which is ~10% 

      !  Ultimately need BK to 5% accuracy for real phenomenological impact

How precise? 

|εK | = CεBKA2η{−η1S0(xc)(1 − λ2/2) + η3S0(xc, xt) + η2S0(xt)A
2λ2(1 − ρ)}

D. Bucholz,
FPCP06

CDF:  Talk by Guillelmo Gomez-Ceballos, 3PM, today.

fB(s) result

fB(s) is similar to fD, for which we have seen an agreement with Exp’t

HPQCD, hep-lat/0507015 (Shigemitsu&Allison’s talks)

n f = 2+1 (MILC conf), impr stag light + NRQCD heavy

0 0.5 1 1.5

m
q
/m

s

0.9

1

1.1

1.2

1.3

!
(B

s) 
/ 
!

(B
q
)

Coarse lattice, Partially Quenched

Coarse lattice, Full QCD

Fine lattice, Full QCD

Full QCD continuum ChPT

Linear fit, no chiral logs

Full QCD Staggered ChPT

JLQCD (N
f
=2)

Linear fit to JLQCD

fBs/ fB
√
MBs/MB vs. mq/ms

! fits with S!PT, !PT, linear ansatz

=⇒ only 3% difference

insensitive to fit form with mq<ms/2

deviation from JLQCD(n f=2) linear fit

fB = 216(9)sta+!fit(19)PT(7)othersMeV
total 10% (PT O("2) error largest )

fBs/ fB = 1.20(3)sta+!fit(1)others
PT error cancel =⇒ total 3%

Combining

and

BB(s)

No new/updated unquenched BB(s) result this year.

(n f = 0 study with Overlap light, Blossier’s talk)

Best result: JLQCD’03

n f = 2, clover light + NRQCD heavy

B(mb) = 0.836(27)(+56−62) , B̂s/B̂= 1.017(16)(+56−17)

⇓

With HPQCD’s f
n f=2+1
B(s)

,

fB

√
B̂B = 244(26)MeV, =⇒ |Vtd|Lat05 = 7.4(0.8)×10−3)

(|Vtd|PDG04 = 8.3(1.6)×10−3)

fBs/ fB

√
B̂Bs/B̂B = 1.210(+47−35) !(|Vtd|/|Vts|) = 3−4% with forthcoming "MBs

HPQCD

JLQCD

Okamoto obtains

BB(s)

No new/updated unquenched BB(s) result this year.

(n f = 0 study with Overlap light, Blossier’s talk)

Best result: JLQCD’03

n f = 2, clover light + NRQCD heavy

B(mb) = 0.836(27)(+56−62) , B̂s/B̂= 1.017(16)(+56−17)

⇓

With HPQCD’s f
n f=2+1
B(s)

,

fB

√
B̂B = 244(26)MeV, =⇒ |Vtd|Lat05 = 7.4(0.8)×10−3)

(|Vtd|PDG04 = 8.3(1.6)×10−3)

fBs/ fB

√
B̂Bs/B̂B = 1.210(+47−35) !(|Vtd|/|Vts|) = 3−4% with forthcoming "MBs
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R. Van de Water  /16BK with domain-wall valence quarks and 2+1 flavors of staggered sea quarks

BK and the unitarity triangle

Size of indirect CP-violation in the neutral kaon system (!K) + BK          constraint 

on apex of CKM unitarity triangle:

!K  well-known experimentally         !dominant error from uncertainty in BK

Likely that new physics would produce 

additional CP violating phases;  these would 

manifest themselves as apparent inconsistencies  

between measurements of quantities that 

should be identical in the Standard Model

     Precise determination of BK will help 

constrain physics beyond the SM

3

!

 "

 "

 A=|Vcb| known to ~2% and enters the above expression as the 4th power   

      !  Must reduce error in BK to below that from |Vcb|4, which is ~10% 

      !  Ultimately need BK to 5% accuracy for real phenomenological impact

How precise? 

|εK | = CεBKA2η{−η1S0(xc)(1 − λ2/2) + η3S0(xc, xt) + η2S0(xt)A
2λ2(1 − ρ)}

Effect of D0 result on CKM fits:

!"#"$%%& '()*+,--./0 $1

!"#$%&'()'&*+',)-&$.-&/ 0.-$)12+

Cut and pasted from Okamoto’s 
Lattice 2005 review transparencies:

BB(s)

No new/updated unquenched BB(s) result this year.

(n f = 0 study with Overlap light, Blossier’s talk)

Best result: JLQCD’03

n f = 2, clover light + NRQCD heavy

B(mb) = 0.836(27)(+56−62) , B̂s/B̂= 1.017(16)(+56−17)

⇓

With HPQCD’s f
n f=2+1
B(s)

,

fB

√
B̂B = 244(26)MeV, =⇒ |Vtd|Lat05 = 7.4(0.8)×10−3)

(|Vtd|PDG04 = 8.3(1.6)×10−3)

fBs/ fB

√
B̂Bs/B̂B = 1.210(+47−35) !(|Vtd|/|Vts|) = 3−4% with forthcoming "MBs

BB(s)

No new/updated unquenched BB(s) result this year.

(n f = 0 study with Overlap light, Blossier’s talk)

Best result: JLQCD’03

n f = 2, clover light + NRQCD heavy

B(mb) = 0.836(27)(+56−62) , B̂s/B̂= 1.017(16)(+56−17)

⇓

With HPQCD’s f
n f=2+1
B(s)

,

fB

√
B̂B = 244(26)MeV, =⇒ |Vtd|Lat05 = 7.4(0.8)×10−3)

(|Vtd|PDG04 = 8.3(1.6)×10−3)

fBs/ fB

√
B̂Bs/B̂B = 1.210(+47−35) !(|Vtd|/|Vts|) = 3−4% with forthcoming "MBs

BB(s)

No new/updated unquenched BB(s) result this year.

(n f = 0 study with Overlap light, Blossier’s talk)

Best result: JLQCD’03

n f = 2, clover light + NRQCD heavy

B(mb) = 0.836(27)(+56−62) , B̂s/B̂= 1.017(16)(+56−17)

⇓

With HPQCD’s f
n f=2+1
B(s)

,

fB

√
B̂B = 244(26)MeV, =⇒ |Vtd|Lat05 = 7.4(0.8)×10−3)

(|Vtd|PDG04 = 8.3(1.6)×10−3)

fBs/ fB

√
B̂Bs/B̂B = 1.210(+47−35) !(|Vtd|/|Vts|) = 3−4% with forthcoming "MBs
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R. Van de Water  /16BK with domain-wall valence quarks and 2+1 flavors of staggered sea quarks

BK and the unitarity triangle

Size of indirect CP-violation in the neutral kaon system (!K) + BK          constraint 

on apex of CKM unitarity triangle:

!K  well-known experimentally         !dominant error from uncertainty in BK

Likely that new physics would produce 

additional CP violating phases;  these would 

manifest themselves as apparent inconsistencies  

between measurements of quantities that 

should be identical in the Standard Model

     Precise determination of BK will help 

constrain physics beyond the SM

3

!

 "

 "

 A=|Vcb| known to ~2% and enters the above expression as the 4th power   

      !  Must reduce error in BK to below that from |Vcb|4, which is ~10% 

      !  Ultimately need BK to 5% accuracy for real phenomenological impact

How precise? 

|εK | = CεBKA2η{−η1S0(xc)(1 − λ2/2) + η3S0(xc, xt) + η2S0(xt)A
2λ2(1 − ρ)}

Effect of D0 result on CKM fits:

!"#"$%%& '()*+,--./0 $!

!"#$%&'()'&*+',)-&$.-&/ 0.-$)12+

Cut and pasted from Okamoto’s 
Lattice 2005 review transparencies:

BB(s)

No new/updated unquenched BB(s) result this year.

(n f = 0 study with Overlap light, Blossier’s talk)

Best result: JLQCD’03

n f = 2, clover light + NRQCD heavy

B(mb) = 0.836(27)(+56−62) , B̂s/B̂= 1.017(16)(+56−17)

⇓

With HPQCD’s f
n f=2+1
B(s)

,

fB

√
B̂B = 244(26)MeV, =⇒ |Vtd|Lat05 = 7.4(0.8)×10−3)

(|Vtd|PDG04 = 8.3(1.6)×10−3)

fBs/ fB

√
B̂Bs/B̂B = 1.210(+47−35) !(|Vtd|/|Vts|) = 3−4% with forthcoming "MBs

BB(s)

No new/updated unquenched BB(s) result this year.

(n f = 0 study with Overlap light, Blossier’s talk)

Best result: JLQCD’03

n f = 2, clover light + NRQCD heavy
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R. Van de Water  /16BK with domain-wall valence quarks and 2+1 flavors of staggered sea quarks

BK and the unitarity triangle

Size of indirect CP-violation in the neutral kaon system (!K) + BK          constraint 

on apex of CKM unitarity triangle:

!K  well-known experimentally         !dominant error from uncertainty in BK

Likely that new physics would produce 

additional CP violating phases;  these would 

manifest themselves as apparent inconsistencies  

between measurements of quantities that 

should be identical in the Standard Model

     Precise determination of BK will help 

constrain physics beyond the SM

3

!

 "

 "

 A=|Vcb| known to ~2% and enters the above expression as the 4th power   

      !  Must reduce error in BK to below that from |Vcb|4, which is ~10% 

      !  Ultimately need BK to 5% accuracy for real phenomenological impact

How precise? 

|εK | = CεBKA2η{−η1S0(xc)(1 − λ2/2) + η3S0(xc, xt) + η2S0(xt)A
2λ2(1 − ρ)}

A new operator emerges:

QS = bRsL bRsL

〈Bs|QS |Bs〉 = − 5
12

M2
Bs

M2
Bs

(m̄b + m̄s)2
f2

Bs
BS

Our 1998 prediction including corrections of order αs and ΛQCD/mb:

(
∆Γ
Γ

)

Bs

=
(

fBs

210 MeV

)2

[ 0.006 B + 0.172 BS − 0.063]

= 0.14 ± 0.05.

Pathological situation: Both the 1/mb and αs corrections are large and

decrease ∆Γ, leading to large uncertainties. Moreover BS dominates over B,

so that ∆Γ/∆m depends on BS/B.

Ulrich Nierste B−B mixing: mass and width differences and CP violation page 15

Van Kooten
FPCP 2006

New operator needed:

Not done unquenched, but Becirevic et al., 01, have calculated 
the complete set of four-quark operators quenched:

J
H
E
P
0
4
(
2
0
0
2
)
0
2
5

Contents

1. Introduction 1

2. Direct lattice results 3
2.1 Computation in lattice QCD 3
2.2 Computation in the static limit of HQET 6

3. Extrapolation to the B-mesons 9
3.1 Getting the physical results for BMS

1,2,3(mb) 10
3.2 Physical results for BMS

4,5 (mb) 15

4. Systematic uncertainties 17

5. Concluding remarks 19

6. Non-perturbative calculation of the renormalization and subtraction
constants in the (Landau)RI/MOM scheme 20

1. Introduction

This paper is devoted to a combined analysis of the matrix elements of the complete set of
∆B = 2 operators, which we computed on the lattice in both the static limit of the heavy
quark effective theory (HQET) and in standard lattice QCD (with Wilson fermions). All
five operators enter the phenomenological analyses of supersymmetric (SUSY) effects that
might affect the Standard Model (SM) expectations for ∆mBd and/or ∆mBs . It is therefore
convenient to work in the so-called SUSY basis of operators [1]:

O1 = b̄iγµ(1 − γ5)qi b̄jγµ(1 − γ5)qj ,

O2 = b̄i(1 − γ5)qi b̄j(1 − γ5)qj ,

O3 = b̄i(1 − γ5)qj b̄j(1 − γ5)qi ,

O4 = b̄i(1 − γ5)qi b̄j(1 + γ5)qj ,

O5 = b̄i(1 − γ5)qj b̄j(1 + γ5)qi , (1.1)

where the superscripts denote colour indices, and q stands for either d- or s- light quark
flavour. The first of the above operators has been widely studied over the last decade, since
it is crucial for the SM description of the B0 − B0 mixing amplitude, whereas O2 and O3

were also recently studied because they are relevant for the SM estimates of the relative
width difference in the neutral B-meson system, (∆Γ/Γ)Bs

[2].

– 1 –

J
H
E
P
0
4
(
2
0
0
2
)
0
2
5

◦ We used the two-loop running coupling αs(µ) by taking Λ(nF =0)
QCD = 0.25GeV. We tried

to vary Λ(nF =0)
QCD by 10% (which covers all the presently available lattice estimates [32]),

and see that the final results vary in the range of ±1.5%.

We now write our results in a fully explicit form as:

B(d)MS
1 (mb) = 0.87(4)(3)(0)

(
+4
−2

)
, B(s)MS

1 (mb) = 0.87(2)(3)(0)
(
+4
−2

)
,

B(d)MS
2 (mb) = 0.83(3)(3)(1)(2) , B(s)MS

2 (mb) = 0.84(2)(3)(1)(2) ,

B(d)MS
3 (mb) = 0.90(6)(3)(7)(2) , B(s)MS

3 (mb) = 0.91(3)(3)(7)(2) ,

B(d)MS
4 (mb) = 1.15(3)(4)

(+0
−4

)
(3) , B(s)MS

4 (mb) = 1.16(2)(4)
(+0
−4

)
(3) ,

B(d)MS
5 (mb) = 1.72(4)(5)

(
+19
−00

)
(3) , B(s)MS

5 (mb) = 1.75(3)(5)
(
+20
−00

)
(3) , (4.1)

where, besides the first statistical errors, the following sources of the systematic uncertainty
are being written out respectively: systematics of the calculation in the static limit of
HQET, the error in the renormalization of B-parameters computed in QCD, combined
error due to the variation of a−1 and of Λ(nF =0)

QCD (and also due to the improvement of the
axial current in the case of B1). After adding all systematic errors in squares we arrive at
the complete set of results already given in table 1.

To be able to fully reconstruct the numbers that we presented in table 1, we also need
to provide the reader with the formulae allowing the conversion of the parameters B2(mb)
and B3(mb) from the MS(NDR) scheme of ref. [11] to the one of ref. [9]. This is achieved
by using the following formula

(
〈O2(µ)〉
〈O3(µ)〉

)MS [9]
=

[
I +

αs(µ)
12 π

(
−11 1
1 5

) ] (
〈O2(µ)〉
〈O3(µ)〉

)MS [11]
, (4.2)

which we obtained after rotating the operators QSLL
1,2 (µ)MS of ref. [9] to the SUSY ba-

sis (1.1).

5. Concluding remarks

In this paper we computed the B-parameters for all five ∆B = 2 operators. The extrapo-
lation of the results obtained directly in lattice QCD in the region of masses mP ∼ 2GeV
to the physically interesting mass mBd/s

, has been constrained by using the static HQET
result. The matching QCD ↔ HQET and running in each of the two theories have been
made by the consistent use of the perturbative expressions known at NLO. The final results
are presented in three renormalization schemes (see table 1).

Our results can be improved in many ways. We combined the results of the QCD lattice
simulations performed at β = 6.2 with the HQET ones obtained at β = 6.0. Naturally, a
good strategy would be to do the computation at the same value of β in both theories, to
vary the value of β (i.e. of the lattice spacing) and attempt extrapolating to the continuum
limit. Such a study is important because it would allow one to eliminate the discretization

– 19 –

Now must be repeated, unquenched.

BsBs Mixing
_
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B→ D(∗)l! decay

B(B→ D(∗)l!) " |Vcb|2|FB→D(∗)(1)|2
Z
dw f (∗)(w)

where w= vB · vD. Use double ratio (FNAL’99): C
DV0B(t)CBV0D(t)

C
DV0D(t)CBV0B(t)

→ 〈D|V0|B〉〈B|V0|D〉
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Heavy quark theory: normalization →1 in the HQ symmetry limit. 

Form factor shape is well-measure in experiment.
Theory must supply the normalization.

But, high precision is required.

Ratio method: determine the form factor from a quantity which goes to 1 with vanishing 
errors in the symmetry limit.

Fermilab 99.
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Similar situation.  Amplitude is normalized to1 in the (chiral) symmetry limit.

Rome (Becirevic et al.) 04: try the same approach, the ratio method.

Leutwyler-Roos quark model 0.961(8)

Becirevic et al. nf=0 0.960(5)(6)

JLQCD nf=2 0.952(6)

Fermilab/MILC nf=2+1 0.962(6)(9)

RBC nf=2 0.964(9)(5)

No surprises from theory.  
Kl3 experiment explains the first row unitarity puzzle.

f+(0):
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CLEO-c/lattice charm physics goals:
- Test lattice amplitude calculations on CKM independent combinations of amplitudes.
- Use tested lattice calculations to obtain new CKM determinations.

Leptonic/Semileptonic ratio

CKM factor |Vcq| canceled in the ratio ( =⇒ a good test of LQCD):

Rcd ≡

√
B(D→ l!)

B(D→ "l!)
#

fD

fD→!
+ (0)

· |Vcd|/

|Vcd|/

LQCD(n f = 2+1), FNAL/MILC
Rcd = 0.22(2)

Exp’t, CLEO-c’05 etc

Rcd = 0.25(2)

200 250

f
D
 [MeV]

2 3 4 5

Br(D!>!l")x10
3

0.20 0.25

R
cd

Exp’t

LQCD

CP!PACS

PDG’04
(CLEO’05)

(FNAL/MILC)

Agree with Exp’t for D physics. =⇒ credibility for B physics

Test lattice:

Rcd=0.22(2)
Fermilab/MILC 

nf=2+1

Rcd=0.25(2) CLEO-c
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

q2/mDs*
2

0

0.5

1

1.5

2

2.5

f +(q
2 )

0

q2
max/mDs*

2

experiment [Belle, hep-ex/0510003]
lattice QCD [Fermilab/MILC, hep-ph/0408306]

D → Klν

A prediction: shape of the D→K lν form factor.

CLEO-c is threatening to drastically improve. → More stringent tests.



Paul Mackenzie    Flavor Physics and CP Violation, April 9-12, 2006

D→{K,π}lν

25

!"#$%&'"())* ()+,"-.'&/0"1 2-3-"45/6.789%

!"# 5/:"!"$ +9;7'<;-+=>?@?A#+B

3.CD&/9"E!"%&'F)G"H&<I">J3K"85'79"L.%"'F)G

-+>"!"M")NN*)N"F())OG

-%96&;&./"6.C$5%5D'9"<."9P6'7;&89;"H&<I"<50;Q"C76I"&/:9$9/:9/<"

&/L.%C5<&./,""3.CD&/9:"%9;7'<;"H&''"0&89"D9;<"$%96&;&./,

Apply: determine CKM elements.

CLEO-c.  R. Poling, FPCP 2006.
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B→ !l" with n f = 2+1 LQCD

FNAL/MILC stag light + FNAL heavy mvall = mseal Mackenzie’s poster

HPQCD stag light + NRQCD heavy fixed mseal Gulez’s talk

0 5 10 15 20 25

q
2
 [GeV

2
]

0

0.5

1

1.5

2

2.5

 

N
f
=3 (HPQCD)

N
f
=3 (FNAL/MILC)

B!>!l"

f
+

f
0

Systematic error FNAL/MILC HPQCD

ml extrapolation 4% 4%

current matching 1% 9%

q2 dependence 4% -

finite-a, 1/mQ 9% 5%

Total syst 11% 11%

Using branching ratio B(q2 ≥ 16 GeV2) by CLEO’03+Belle’04,

|Vub|×103 = 3.48 (29)sta(38)sys(47)exp [FNAL/MILC; (8+11+13)%=19% error]

|Vub|×103 = 4.04 (20)sta(44)sys(53)exp [HPQCD; (5+11+13)%=18% error]

Lattice data cover on 1/3 of physical q2 range.
More challenging to compare with experiment than 
anything else covered in this talk.

I’ll discuss here how to go beyond current methods, 
rather than current results.

Approaches:

- Moving NRQCD (HPQCD)
- Add SCET point at q2 =0 (Arnesen et al.)

3

the systematic error. Of the eleven reported lattice points
we use only three at separated q2. This maximizes the
shape information while minimizing additional correla-
tions that may occur in neighboring points, for example
from the chiral extrapolation.

Chiral perturbation theory (ChPT) gives model inde-
pendent input for f+ (and f0) when Eπ ∼ mπ, namely

f+

(

q2(Eπ)
)

=
gfBmB

2fπ(Eπ+mB∗−mB)

[

1+ O
(Eπ

∆

)]

, (14)

where g is the B∗Bπ coupling and fB the decay con-
stant. Possible pole contributions from the low lying
Jπ = 0+, 1+, 2+ states vanish by parity and angular
momentum conservation. The first corrections scale as
Eπ/∆, where ∆ ∼ 600 MeV is the mass splitting to the
first radially excited 1− state above the B∗. We take g =
0.5. This is compatible with D∗ decays using heavy quark
symmetry. Updating the ChPT fit in [18] by including
both Γ(D∗+) and D∗ Br-ratios, gives gD∗Dπ # 0.51 (at
an order where there are no counterterm operators and
no 1/mc corrections absorbed in g). For the lattice aver-
age Hashimoto [19] gives fB = 189 MeV. Thus,

f4
in = f+(26.42) = 10.38 ± 3.63 , (15)

where this fairly conservative 35% error is from uncer-
tainty in gfB, and from the mπ/∆ ∼ 23% corrections.

Determining f+. To determine f+(t) we drop ak≥6 in
Eq.(5), and take a5 → a5(1 − z2)−1/2 which properly
bounds the truncation error [20]. The f0−4 input points
then fix a0−4 as functions of a5. Functions that bound
f+(t) are determined from the maximum and minimum
values of a5 satisfying (9) with nA = 5. Thus we solve

18.3a0+3.96a1+0.857a2+0.185a3+0.0401a4 (16)

+0.00887a5 = f0/|Vub| ,
37.8a0+0.960a1+0.0244a2+0.000619a3+1.57×10−5a4

+4.00×10−7a5 = f1 , . . . ,

304.0a0−103.6a1+35.3a2−12.0a3+4.10a4−1.49a5=f4,

a2
0 + a2

1 + a2
2 + a2

3 + a2
4 + a2

5 = 1 .

In Eq.(5) this yields two solutions, F±, with parameters

f+(t) = F±(t, {f0/|Vub|, f1, f2, f3, f4}) . (17)

To see how well these solutions bound the form factor
we fix |Vub| = 3.6 × 10−3, f i = f i

in and plot the bounds
as the two black solid lines in Fig. 1. The curves lie on
top of each other. For comparison we show dashed lines
for the bounds on f+ and f0 obtained using four lattice
points (shown as dots). With these inputs the constraint
f+(0) = f0(0) is less effective than using the SCET point.
|Vub| from total Br-fraction. Equating Eq.(3) with the

theoretical rate obtained using Eqs.(17) gives an analytic
equation for |Vub|. With f i = f i

in the solution is

|Vub| = (4.13 ± 0.21 ± 0.58) × 10−3 . (18)

0.8

0.6

0.4

0.2

0.0
2520151050

q2

1- q2( ) f (q2)

f = f0

f = f+

FIG. 1: Upper and lower bounds on the form factors from
dispersion relations, where q̂2 = q2/m2

B∗ and the (1−q̂2) factor
removes the B∗ pole. The overlapping solid black lines are
bounds F± derived with the SCET point, 3 lattice points,
and the ChPT point (diamonds with error bars). The dashed
lines are the bounds derived using instead four lattice points
(shown by the dots). Input point errors are not included in
these lines, and are analyzed in the text.

Type of Error Variation From δ|Vub|
Br δ|Vub|

q2

Input Points 1-σ correlated errors ±14% ±12%

Bounds F+ versus F− ±0.6% ±0.04%

mpole
b 4.88 ± 0.40 ±0.1% ±0.2%

OPE order 2 loop → 1 loop −0.2% +0.3%

TABLE I: Summary of theoretical uncertainties on |Vub|. Re-
sults are shown for an analysis from the total branching frac-

tion, δ|Vub|
Br, and from using the dΓ/dq2 spectrum, δ|Vub|

q2

.
For the input point error we quote the average from F±.

The first error is experimental, 5.2%, propagated from
Eq.(3). The second error, 14%, is from theory and is
broken down in Table I. It is dominated by the input
points. The bound uncertainty from the choice of so-
lution is < 1% (but would grow to ±12% without the
SCET point). The error from mb and the order in the
OPE and are very small because shifts in the normaliza-

tion through χ(0)
f+

are compensated by shifts in the an co-
efficients, except for the last term a5 which gives a small
contribution. To ensure consistency with the dispersion
bounds the input point uncertainty is calculated using
the Lellouch-method of generating random points from
Gaussians [11], giving 103|Vub| = (3.96 ± 0.20 ± 0.56).
Our distributions were determined using Eqs. (12,13,15)
and the correlation matrix Eij . Taken individually the
SCET and ChPT points give ∼ 5% error, so the lattice
uncertainty dominates.
|Vub| from q2 spectra. Results for partial branching

fractions, (Brexp
i ± δBri), over different bins in q2 are

also available. Cleo [21] and Belle [4] present results
for 3 bins with untagged and π+ semileptonic tags re-
spectively. Babar [5] recently presented total rates from
hadronic & leptonic π+ and π0 tags as well as π+ semilep-
tonic tagged data in 3-bins and untagged data over 5-
bins. By fitting to these 17 pieces of data with Minuit

Arnesen, Rothstien, Grinstien, and Stewart
add SCET point at q2=0 to lattice data, use 
unitarity and analyticity to bound form 
factor.

What do unitarity and anlyticity alone say?



Paul Mackenzie    Flavor Physics and CP Violation, April 9-12, 2006

B→πlν

27

2

functional forms. The variable

z(t, t0) =

√
t+ − t −

√
t+ − t0√

t+ − t +
√

t+ − t0
, (6)

maps t+ < t < ∞ onto |z| = 1 and −∞ < t < t+ onto z ∈
[−1, 1]. t0 is a free parameter that can be chosen to attain
the tightest possible bounds, and it defines z(t0, t0) = 0.
We take t0 = 0.65 t− giving −0.34 ≤ z ≤ 0.22 for the
B → π range. In Eq. (5) the “Blaschke” factor P (t)
eliminates sub-threshold poles, so P (t) = 1 for f0, while
P (t) = z(t; m2

B∗) for f+ due to the B∗ pole. Finally, the
“outer” function is given by

φ(t, t0)=

√

nI

Kχ(0)
J

(√

t+−t+
√

t+−t0
) (t+−t)(a+1)/4

(t+−t0)1/4

×
(
√

t+−t+
√

t+
)−(b+3)(√

t+−t+
√

t+−t−
)a/2

, (7)

where nI = 3/2 and for f+: (K = 48π, a = 3, b = 2),

while for f0: (K = 16π/(t+t−), a = 1, b = 1). Here χ(0)
J

corresponds to the lowest moment of Π(q2) computed
with an OPE. At two loops in terms of the pole mass
and condensates and taking µ = mb [11, 13]

χ(0)
f+

=
3
[

1+1.140 αs(mb)
]

32π2m2
b

−
mb 〈ūu〉

m6
b

−
〈αsG2〉
12πm6

b

,

χ(0)
f0

=

[

1+0.751 αs(mb)
]

8π2
+

mb 〈ūu〉
m4

b

+
〈αsG2〉
12πm4

b

, (8)

with mb〈ūu〉 * −0.076 GeV4, 〈αsG2〉 * 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (5)
the dispersive bound gives a constraint on the coefficients

nA
∑

k=0

a2
k ≤ 1 , (9)

for any choice of nA.
Eqs. (5) and (9) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 , 1. The main power of ana-
lyticity is that if we fix f+(q2) at nA input points then
it constrains the q2 shape between these points. With
nA = 5 the error from the bounds is negligibly small rel-
ative to other uncertainties, as we see below (our analysis

is also insensitive to the exact values of χ(0)
J or mb). The

bounds can be strengthened using heavy quark symme-
try or higher moments of Π(q2) [12], but since this uncer-
tainty is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.

Manipulating formulas in [7] we can write the result in
terms of observables

|Vub|f+(0) =

[

64π

m3
Bf2

π

Br(B− → π0π−)

τB− |Vud|2G2
F

]1/2

(10)

×
[

(C1 + C2)tc − C2

C2
1 − C2

2

][

1 + O
(

αs(mb),
ΛQCD

mb

)

]

,

where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny
C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
In terms of the angles β, γ of the unitarity triangle and
CP-asymmetries Sπ+π− and Cπ+π− in B → π+π−,

tc =

√

Rc
(1+Bπ+π− cos 2β + Sπ+π− sin 2β)

2 sin2γ
, (11)

with Rc =[Br(B0 → π+π−)τB− ]/[2Br(B− → π0π−)τB0 ],
and Bπ+π− = (1− C2

π+π−
−S2

π+π−
)1/2. Eqs. (10,11) im-

prove on relations between B → ππ and B → π(ν̄
derived earlier, such as in Ref. [14], because they do not
rely on expanding in αs(

√
mbΛ) or require the use of

QCD sum rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (10) gives

f0
in = |Vub|f+(0) = (7.2 ± 1.8) × 10−4 . (12)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (10) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, fk
in, which

are crucial in fixing the form factor normalization. Tech-
nically, using staggered fermions might add model depen-
dence from the (detM)1/4 trick. We take the remark-
able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
urations, Refs [2, 3] find consistent results with different
heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058 ± 0.088 , (13)

f2
in = f+(18.58) = 1.128± 0.086 ± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324 ± 0.359 .

The first errors in (13) are statistical, ±σi, and the second
are 11% systematic errors, ±yf i

in, with y = 0.11. For the
lattice error matrix, we use Eij = σ2

i δij + y2f i
inf

j
in, which

takes σi uncorrelated and includes 100% correlation in

( t =q2 = (pH-pL)2,  t+ = (mH+mL)2, t- = (mH-mL)2).

B->π l ν:   -0.34<z<0.22,
D->π l ν :  -0.17<z<0.16,
D->K l ν :  -0.04<z<0.06,
B->D l ν :   -0.02<z<0.04.
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A precision method for determining |Vub| using the full range in q2 of B → π"ν data is presented.
At large q2 the form factor is taken from unquenched lattice QCD, at q2 = 0 we impose a model
independent constraint obtained from B → ππ using the soft-collinear effective theory, and the shape
is constrained using QCD dispersion relations. We find |Vub| = (3.54 ± 0.17 ± 0.44) × 10−3. With
5% experimental error and 12% theory error, this is competitive with inclusive methods. Theory
error is dominated by the input points, with negligible uncertainty from the dispersion relations.

The remarkable success of the B-factories have lead to
a new era for precision results in the CKM sector of the
standard model. For |Vub| inclusive and exclusive mea-
surements from semileptonic decays should yield a precise
value, but must surmount the now dominant theoreti-
cal uncertainties. For inclusive decays measuring |Vub| is
more difficult than |Vcb| because cuts make observables
either sensitive to a structure function which demands
input from radiative decays, or require neutrino recon-
struction. The heavy flavor averaging group (HFAG)’s
average from inclusive decays based on operator product
expansion techniques is 103|Vub| = 4.7±0.4 [1]. Exclusive
techniques for |Vcb| use heavy quark symmetry (HQS) to
normalize the form factors. For |Vub| from B → π"ν̄ sym-
metry techniques fall flat, and model independent form
factor information relies on precision lattice QCD.

Recently, the Fermilab [2] and HPQCD [3] groups have
presented unquenched lattice results for B → π form
factors. Uncertainties in the discretization restrict the
kinematics to pions that are not too energetic Eπ

<∼
1 GeV, which for the invariant mass of the lepton pair
is 15 GeV2 <∼ q2 ≤ 26.4 GeV2. Unfortunately, since the
phase space goes as |$pπ|3, there are less events and more
experimental uncertainty in this region. For B̄0 → π+"ν̄

dΓ/dq2 = N |Vub|2 |$pπ|3 |f+(q2)|2 , (1)

where N = G2
F /(24π3). For example, Belle [4] found

103 |Vub|q2≥16 =

{

3.87 ± 0.70 ± 0.22+0.85
−0.51 (FNAL)

4.73 ± 0.85 ± 0.27+0.74
−0.50 (HPQCD)

(2)

where the errors are statistical, systematic, and theoret-
ical. In quadrature this is an uncertainty of ∼ 25%.

The latest Babar, CLEO, and Belle average is [5],

Br(B̄0 → π+"−ν̄) = (1.39 ± 0.12)× 10−4 , (3)

which should yield |Vub| at the % 5% level. So far extrac-
tions of |Vub| from the total Br rely on QCD sum rules [6]
and quark models for input. For example, HFAG reports
results on Br(B → {π, ρ, ω}"ν̄) that lead to central values

103|Vub| = 2.9 to 3.9 [1]. Due to the uncertainty they do
not currently average over exclusive extractions of |Vub|.

In this letter we present a model independent exclu-
sive method for determining the entire B → π form fac-
tor f+(q2) and thus |Vub|. A total uncertainty δ|Vub| %
13% is achieved by combining 1) the unquenched lat-
tice results [2, 3], 2) a constraint at q2 = 0 derived
from SCET [7] and B → ππ data, which determines
|Vub|f+(0), and 3) dispersion relations and analyticity
which allow us to interpolate over the entire region
of q2 by bounding the shape of f+(q2) between input
points [8, 9]. The SCET constraint induces an additional
implicit functional dependence on |Vub| in the form fac-
tors. Our first analysis uses just the total Br, yielding an
analytic formula for |Vub|. The second includes q2-spectra
with a χ2 minimization which allows the experimental
data to constrain the theoretical uncertainty. A differ-
ent approach for including the q2-spectra was developed
in [10] based on the Lellouch distribution method [11].

Analyticity Bounds. We briefly review how analytic-
ity constrains the B → π form factors, f+ and f0, re-
ferring to [8, 9, 12] for more detail. Our notation fol-
lows [12], and we set t± = (mB ± mπ)2. Suitable mo-
ments of a time ordered product of currents, Πµν(q2) =
i
∫

d4x eiqx〈0|TJµ(x)J†ν (0)|0〉 can be computed with an
OPE in QCD and are related by a dispersion relation to
a positive definite sum over exclusive states

ImΠµν=

∫

[p.s.] δ(q−pBπ)〈0|J†ν |B̄π〉〈B̄π|Jµ|0〉 + . . . (4)

Keeping this first term bounds a weighted integral over
t+ ≤ t ≤ ∞ of the squared Bπ production form factor.
Using analyticity and crossing symmetry this constrains
the shape in t = q2 of the form factors for B → π in the
physical region 0 ≤ t ≤ t−. The results are simple to
express by writing each of f+(t), f0(t) as a series

f(t) =
1

P (t)φ(t, t0)

∞
∑

k=0

ak(t0) z(t, t0)
k , (5)

with coefficients ak that parameterize different allowed
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A precision method for determining |Vub| using the full range in q2 of B → π"ν data is presented.
At large q2 the form factor is taken from unquenched lattice QCD, at q2 = 0 we impose a model
independent constraint obtained from B → ππ using the soft-collinear effective theory, and the shape
is constrained using QCD dispersion relations. We find |Vub| = (3.54 ± 0.17 ± 0.44) × 10−3. With
5% experimental error and 12% theory error, this is competitive with inclusive methods. Theory
error is dominated by the input points, with negligible uncertainty from the dispersion relations.

The remarkable success of the B-factories have lead to
a new era for precision results in the CKM sector of the
standard model. For |Vub| inclusive and exclusive mea-
surements from semileptonic decays should yield a precise
value, but must surmount the now dominant theoreti-
cal uncertainties. For inclusive decays measuring |Vub| is
more difficult than |Vcb| because cuts make observables
either sensitive to a structure function which demands
input from radiative decays, or require neutrino recon-
struction. The heavy flavor averaging group (HFAG)’s
average from inclusive decays based on operator product
expansion techniques is 103|Vub| = 4.7±0.4 [1]. Exclusive
techniques for |Vcb| use heavy quark symmetry (HQS) to
normalize the form factors. For |Vub| from B → π"ν̄ sym-
metry techniques fall flat, and model independent form
factor information relies on precision lattice QCD.

Recently, the Fermilab [2] and HPQCD [3] groups have
presented unquenched lattice results for B → π form
factors. Uncertainties in the discretization restrict the
kinematics to pions that are not too energetic Eπ

<∼
1 GeV, which for the invariant mass of the lepton pair
is 15 GeV2 <∼ q2 ≤ 26.4 GeV2. Unfortunately, since the
phase space goes as |$pπ|3, there are less events and more
experimental uncertainty in this region. For B̄0 → π+"ν̄

dΓ/dq2 = N |Vub|2 |$pπ|3 |f+(q2)|2 , (1)

where N = G2
F /(24π3). For example, Belle [4] found

103 |Vub|q2≥16 =

{

3.87 ± 0.70 ± 0.22+0.85
−0.51 (FNAL)

4.73 ± 0.85 ± 0.27+0.74
−0.50 (HPQCD)

(2)

where the errors are statistical, systematic, and theoret-
ical. In quadrature this is an uncertainty of ∼ 25%.

The latest Babar, CLEO, and Belle average is [5],

Br(B̄0 → π+"−ν̄) = (1.39 ± 0.12)× 10−4 , (3)

which should yield |Vub| at the % 5% level. So far extrac-
tions of |Vub| from the total Br rely on QCD sum rules [6]
and quark models for input. For example, HFAG reports
results on Br(B → {π, ρ, ω}"ν̄) that lead to central values

103|Vub| = 2.9 to 3.9 [1]. Due to the uncertainty they do
not currently average over exclusive extractions of |Vub|.

In this letter we present a model independent exclu-
sive method for determining the entire B → π form fac-
tor f+(q2) and thus |Vub|. A total uncertainty δ|Vub| %
13% is achieved by combining 1) the unquenched lat-
tice results [2, 3], 2) a constraint at q2 = 0 derived
from SCET [7] and B → ππ data, which determines
|Vub|f+(0), and 3) dispersion relations and analyticity
which allow us to interpolate over the entire region
of q2 by bounding the shape of f+(q2) between input
points [8, 9]. The SCET constraint induces an additional
implicit functional dependence on |Vub| in the form fac-
tors. Our first analysis uses just the total Br, yielding an
analytic formula for |Vub|. The second includes q2-spectra
with a χ2 minimization which allows the experimental
data to constrain the theoretical uncertainty. A differ-
ent approach for including the q2-spectra was developed
in [10] based on the Lellouch distribution method [11].

Analyticity Bounds. We briefly review how analytic-
ity constrains the B → π form factors, f+ and f0, re-
ferring to [8, 9, 12] for more detail. Our notation fol-
lows [12], and we set t± = (mB ± mπ)2. Suitable mo-
ments of a time ordered product of currents, Πµν(q2) =
i
∫

d4x eiqx〈0|TJµ(x)J†ν (0)|0〉 can be computed with an
OPE in QCD and are related by a dispersion relation to
a positive definite sum over exclusive states

ImΠµν=

∫

[p.s.] δ(q−pBπ)〈0|J†ν |B̄π〉〈B̄π|Jµ|0〉 + . . . (4)

Keeping this first term bounds a weighted integral over
t+ ≤ t ≤ ∞ of the squared Bπ production form factor.
Using analyticity and crossing symmetry this constrains
the shape in t = q2 of the form factors for B → π in the
physical region 0 ≤ t ≤ t−. The results are simple to
express by writing each of f+(t), f0(t) as a series

f(t) =
1

P (t)φ(t, t0)

∞
∑

k=0

ak(t0) z(t, t0)
k , (5)

with coefficients ak that parameterize different allowed

2

functional forms. The variable

z(t, t0) =

√
t+ − t −

√
t+ − t0√

t+ − t +
√

t+ − t0
, (6)

maps t+ < t < ∞ onto |z| = 1 and −∞ < t < t+ onto z ∈
[−1, 1]. t0 is a free parameter that can be chosen to attain
the tightest possible bounds, and it defines z(t0, t0) = 0.
We take t0 = 0.65 t− giving −0.34 ≤ z ≤ 0.22 for the
B → π range. In Eq. (5) the “Blaschke” factor P (t)
eliminates sub-threshold poles, so P (t) = 1 for f0, while
P (t) = z(t; m2

B∗) for f+ due to the B∗ pole. Finally, the
“outer” function is given by

φ(t, t0)=

√

nI

Kχ(0)
J

(√

t+−t+
√

t+−t0
) (t+−t)(a+1)/4

(t+−t0)1/4

×
(
√

t+−t+
√

t+
)−(b+3)(√

t+−t+
√

t+−t−
)a/2

, (7)

where nI = 3/2 and for f+: (K = 48π, a = 3, b = 2),

while for f0: (K = 16π/(t+t−), a = 1, b = 1). Here χ(0)
J

corresponds to the lowest moment of Π(q2) computed
with an OPE. At two loops in terms of the pole mass
and condensates and taking µ = mb [11, 13]

χ(0)
f+

=
3
[

1+1.140 αs(mb)
]

32π2m2
b

−
mb 〈ūu〉

m6
b

−
〈αsG2〉
12πm6

b

,

χ(0)
f0

=

[

1+0.751 αs(mb)
]

8π2
+

mb 〈ūu〉
m4

b

+
〈αsG2〉
12πm4

b

, (8)

with mb〈ūu〉 * −0.076 GeV4, 〈αsG2〉 * 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (5)
the dispersive bound gives a constraint on the coefficients

nA
∑

k=0

a2
k ≤ 1 , (9)

for any choice of nA.
Eqs. (5) and (9) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 , 1. The main power of ana-
lyticity is that if we fix f+(q2) at nA input points then
it constrains the q2 shape between these points. With
nA = 5 the error from the bounds is negligibly small rel-
ative to other uncertainties, as we see below (our analysis

is also insensitive to the exact values of χ(0)
J or mb). The

bounds can be strengthened using heavy quark symme-
try or higher moments of Π(q2) [12], but since this uncer-
tainty is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.

Manipulating formulas in [7] we can write the result in
terms of observables

|Vub|f+(0) =

[

64π

m3
Bf2

π

Br(B− → π0π−)

τB− |Vud|2G2
F

]1/2

(10)

×
[

(C1 + C2)tc − C2

C2
1 − C2

2

][

1 + O
(

αs(mb),
ΛQCD

mb

)

]

,

where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny
C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
In terms of the angles β, γ of the unitarity triangle and
CP-asymmetries Sπ+π− and Cπ+π− in B → π+π−,

tc =

√

Rc
(1+Bπ+π− cos 2β + Sπ+π− sin 2β)

2 sin2γ
, (11)

with Rc =[Br(B0 → π+π−)τB− ]/[2Br(B− → π0π−)τB0 ],
and Bπ+π− = (1− C2

π+π−
−S2

π+π−
)1/2. Eqs. (10,11) im-

prove on relations between B → ππ and B → π(ν̄
derived earlier, such as in Ref. [14], because they do not
rely on expanding in αs(

√
mbΛ) or require the use of

QCD sum rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (10) gives

f0
in = |Vub|f+(0) = (7.2 ± 1.8) × 10−4 . (12)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (10) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, fk
in, which

are crucial in fixing the form factor normalization. Tech-
nically, using staggered fermions might add model depen-
dence from the (detM)1/4 trick. We take the remark-
able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
urations, Refs [2, 3] find consistent results with different
heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058 ± 0.088 , (13)

f2
in = f+(18.58) = 1.128± 0.086 ± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324 ± 0.359 .

The first errors in (13) are statistical, ±σi, and the second
are 11% systematic errors, ±yf i

in, with y = 0.11. For the
lattice error matrix, we use Eij = σ2

i δij + y2f i
inf

j
in, which

takes σi uncorrelated and includes 100% correlation in

2

functional forms. The variable

z(t, t0) =

√
t+ − t −

√
t+ − t0√

t+ − t +
√

t+ − t0
, (6)

maps t+ < t < ∞ onto |z| = 1 and −∞ < t < t+ onto z ∈
[−1, 1]. t0 is a free parameter that can be chosen to attain
the tightest possible bounds, and it defines z(t0, t0) = 0.
We take t0 = 0.65 t− giving −0.34 ≤ z ≤ 0.22 for the
B → π range. In Eq. (5) the “Blaschke” factor P (t)
eliminates sub-threshold poles, so P (t) = 1 for f0, while
P (t) = z(t; m2

B∗) for f+ due to the B∗ pole. Finally, the
“outer” function is given by

φ(t, t0)=
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Kχ(0)
J

(√

t+−t+
√

t+−t0
) (t+−t)(a+1)/4

(t+−t0)1/4

×
(
√

t+−t+
√

t+
)−(b+3)(√
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√
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)a/2

, (7)

where nI = 3/2 and for f+: (K = 48π, a = 3, b = 2),

while for f0: (K = 16π/(t+t−), a = 1, b = 1). Here χ(0)
J

corresponds to the lowest moment of Π(q2) computed
with an OPE. At two loops in terms of the pole mass
and condensates and taking µ = mb [11, 13]
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f+

=
3
[

1+1.140 αs(mb)
]

32π2m2
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−
mb 〈ūu〉

m6
b

−
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,
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=

[

1+0.751 αs(mb)
]

8π2
+

mb 〈ūu〉
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+
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, (8)

with mb〈ūu〉 * −0.076 GeV4, 〈αsG2〉 * 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (5)
the dispersive bound gives a constraint on the coefficients

nA
∑

k=0

a2
k ≤ 1 , (9)

for any choice of nA.
Eqs. (5) and (9) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 , 1. The main power of ana-
lyticity is that if we fix f+(q2) at nA input points then
it constrains the q2 shape between these points. With
nA = 5 the error from the bounds is negligibly small rel-
ative to other uncertainties, as we see below (our analysis

is also insensitive to the exact values of χ(0)
J or mb). The

bounds can be strengthened using heavy quark symme-
try or higher moments of Π(q2) [12], but since this uncer-
tainty is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.

Manipulating formulas in [7] we can write the result in
terms of observables

|Vub|f+(0) =

[

64π

m3
Bf2

π

Br(B− → π0π−)

τB− |Vud|2G2
F

]1/2

(10)

×
[

(C1 + C2)tc − C2

C2
1 − C2
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][

1 + O
(

αs(mb),
ΛQCD

mb

)

]

,

where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny
C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
In terms of the angles β, γ of the unitarity triangle and
CP-asymmetries Sπ+π− and Cπ+π− in B → π+π−,

tc =

√

Rc
(1+Bπ+π− cos 2β + Sπ+π− sin 2β)

2 sin2γ
, (11)

with Rc =[Br(B0 → π+π−)τB− ]/[2Br(B− → π0π−)τB0 ],
and Bπ+π− = (1− C2

π+π−
−S2

π+π−
)1/2. Eqs. (10,11) im-

prove on relations between B → ππ and B → π(ν̄
derived earlier, such as in Ref. [14], because they do not
rely on expanding in αs(

√
mbΛ) or require the use of

QCD sum rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (10) gives

f0
in = |Vub|f+(0) = (7.2 ± 1.8) × 10−4 . (12)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (10) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, fk
in, which

are crucial in fixing the form factor normalization. Tech-
nically, using staggered fermions might add model depen-
dence from the (detM)1/4 trick. We take the remark-
able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
urations, Refs [2, 3] find consistent results with different
heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058 ± 0.088 , (13)

f2
in = f+(18.58) = 1.128± 0.086 ± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324 ± 0.359 .

The first errors in (13) are statistical, ±σi, and the second
are 11% systematic errors, ±yf i

in, with y = 0.11. For the
lattice error matrix, we use Eij = σ2

i δij + y2f i
inf

j
in, which

takes σi uncorrelated and includes 100% correlation in

2

functional forms. The variable
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, (6)
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[−1, 1]. t0 is a free parameter that can be chosen to attain
the tightest possible bounds, and it defines z(t0, t0) = 0.
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eliminates sub-threshold poles, so P (t) = 1 for f0, while
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√
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while for f0: (K = 16π/(t+t−), a = 1, b = 1). Here χ(0)
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=
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with mb〈ūu〉 * −0.076 GeV4, 〈αsG2〉 * 0.063GeV4. We
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b = 4.88 GeV as a central value. With Eq. (5)
the dispersive bound gives a constraint on the coefficients
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a2
k ≤ 1 , (9)

for any choice of nA.
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able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
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heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:
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P and phi contain most of the complexity of the 
form factors.  Unitarity requires simply that

Builds in effects of B* pole without spoiling 
unitarity constraints.

The function

maps the physical q2 region into 

The form factors can be written

Accounts for 
B* pole.

Calculable function to 
make aks look simple.

Unitarity requires just that
According to the unitarity bound, even 
for B->πlν, 5 or 6 terms in series suffice 
for 1% accuracy.
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section is not appreciably altered if additional terms are included.

3 Form factor bounds

To make a fully rigorous determination of |Vub|, the truncation to the three-parameter classes
of curves considered in the previous section requires justification. For instance, if the neglected
terms in (2) or (5) conspired to produce a sharp peak in the form factor at precisely the value
of the lattice input point, then the integrated rate would be overestimated, and the value of
|Vub| underestimated. To prevent this from happening requires some bound on the perversity
of allowed form factor shapes. In practice, we would like to ensure that our extraction of
physical observables is “model-independent” by allowing for arbitrarily many parameters, i.e.,
taking N → ∞ in (2) and kmax → ∞ in (5). Retaining predictive power then demands that a
bound be enforced on the parameters appearing in these expansions.

To bound the coefficients ρk in the expansion (2), we introduce a decomposition of the
integration region, t+ ≤ t1 < · · · < tN+1 < ∞, and define

ρk ≡
1

π

∫ tk+1

tk

dt

t
ImF+(t) , γk ≡

tk
m2

B∗

. (7)

Since F+(t) ∼ t−1 at large t, it follows that

∑

k

|ρk| ≤
1

π

∫

∞

t+

dt

t
|F+(t)| ≡ R , (8)

and this is the desired bound. The integral in (8) is dominated by states with t − t+ ∼ mbΛ,

where F+ ∼ m1/2
b , so that the quantity R is parametrically of order (Λ/mb)1/2, with Λ a

hadronic scale. To be sure that the bound deserves the model-independent moniker, one
should use a very conservative estimate. In our fits we will use R ≤

√
10 and R ≤ 10, i.e., we

allow for an addition factor of 100 or 1000 beyond the dimensional estimate R2 ∼ Λ/mb ∼ 0.1.
The coefficients ak in the expansion (5) can be bounded by requiring that the production

rate of Bπ states, described by the analytically continued form factor, does not overwhelm
the production rate of all states coupling to the current of interest (in this case, the vector
current ūγµb). The latter rate is computable in perturbative QCD using the operator product
expansion (for a pedagogical discussion, see e.g. [10]). The function φ in (6) was chosen such
that the fractional contribution of Bπ states to this rate is given at leading order by

∞
∑

k=0

a2
k =

1

2πi

∮

dz

z
|φ(z)P (z)F+(z)|2 =

m2
b

3

∫

∞

t+

dt

t5
[(t − t+)(t − t−)]3/2|F+(t)|2 ≡ A . (9)

In the heavy quark limit, the leading contributions to the integral A in (9) are of order (Λ/mb)3

and arise from two regions: the region close to threshold, t − t+ ∼ mbΛ, where the pion has
energy E ∼ Λ and the form factor scales as F+ ∼ m1/2

b ; and the region t − t+ ∼ m2
b , where

E ∼ mb and F+ ∼ m−3/2
b (for a discussion of the form factor scalings, see [12]). The region of

very high energies t ( m2
b , where F+ ∼ 1/t, gives a subleading contribution.
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Two (maybe three) terms should suffice in power series for 1% 
accuracy in form factors.

Test on lattice results:
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A Precision Model Independent Determination of |Vub| from B → πlν

M. Christian Arnesen,1 Ben Grinstein,2 Ira Z. Rothstein,3 and Iain W. Stewart1

1Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
2Department of Physics, University of California, San Diego, La Jolla, CA, 92093

3Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213

A precision method for determining |Vub| using the full range in q2 of B → π"ν data is presented.
At large q2 the form factor is taken from unquenched lattice QCD, at q2 = 0 we impose a model
independent constraint obtained from B → ππ using the soft-collinear effective theory, and the shape
is constrained using QCD dispersion relations. We find |Vub| = (3.54 ± 0.17 ± 0.44) × 10−3. With
5% experimental error and 12% theory error, this is competitive with inclusive methods. Theory
error is dominated by the input points, with negligible uncertainty from the dispersion relations.

The remarkable success of the B-factories have lead to
a new era for precision results in the CKM sector of the
standard model. For |Vub| inclusive and exclusive mea-
surements from semileptonic decays should yield a precise
value, but must surmount the now dominant theoreti-
cal uncertainties. For inclusive decays measuring |Vub| is
more difficult than |Vcb| because cuts make observables
either sensitive to a structure function which demands
input from radiative decays, or require neutrino recon-
struction. The heavy flavor averaging group (HFAG)’s
average from inclusive decays based on operator product
expansion techniques is 103|Vub| = 4.7±0.4 [1]. Exclusive
techniques for |Vcb| use heavy quark symmetry (HQS) to
normalize the form factors. For |Vub| from B → π"ν̄ sym-
metry techniques fall flat, and model independent form
factor information relies on precision lattice QCD.

Recently, the Fermilab [2] and HPQCD [3] groups have
presented unquenched lattice results for B → π form
factors. Uncertainties in the discretization restrict the
kinematics to pions that are not too energetic Eπ

<∼
1 GeV, which for the invariant mass of the lepton pair
is 15 GeV2 <∼ q2 ≤ 26.4 GeV2. Unfortunately, since the
phase space goes as |$pπ|3, there are less events and more
experimental uncertainty in this region. For B̄0 → π+"ν̄

dΓ/dq2 = N |Vub|2 |$pπ|3 |f+(q2)|2 , (1)

where N = G2
F /(24π3). For example, Belle [4] found

103 |Vub|q2≥16 =

{

3.87 ± 0.70 ± 0.22+0.85
−0.51 (FNAL)

4.73 ± 0.85 ± 0.27+0.74
−0.50 (HPQCD)

(2)

where the errors are statistical, systematic, and theoret-
ical. In quadrature this is an uncertainty of ∼ 25%.

The latest Babar, CLEO, and Belle average is [5],

Br(B̄0 → π+"−ν̄) = (1.39 ± 0.12)× 10−4 , (3)

which should yield |Vub| at the % 5% level. So far extrac-
tions of |Vub| from the total Br rely on QCD sum rules [6]
and quark models for input. For example, HFAG reports
results on Br(B → {π, ρ, ω}"ν̄) that lead to central values

103|Vub| = 2.9 to 3.9 [1]. Due to the uncertainty they do
not currently average over exclusive extractions of |Vub|.

In this letter we present a model independent exclu-
sive method for determining the entire B → π form fac-
tor f+(q2) and thus |Vub|. A total uncertainty δ|Vub| %
13% is achieved by combining 1) the unquenched lat-
tice results [2, 3], 2) a constraint at q2 = 0 derived
from SCET [7] and B → ππ data, which determines
|Vub|f+(0), and 3) dispersion relations and analyticity
which allow us to interpolate over the entire region
of q2 by bounding the shape of f+(q2) between input
points [8, 9]. The SCET constraint induces an additional
implicit functional dependence on |Vub| in the form fac-
tors. Our first analysis uses just the total Br, yielding an
analytic formula for |Vub|. The second includes q2-spectra
with a χ2 minimization which allows the experimental
data to constrain the theoretical uncertainty. A differ-
ent approach for including the q2-spectra was developed
in [10] based on the Lellouch distribution method [11].

Analyticity Bounds. We briefly review how analytic-
ity constrains the B → π form factors, f+ and f0, re-
ferring to [8, 9, 12] for more detail. Our notation fol-
lows [12], and we set t± = (mB ± mπ)2. Suitable mo-
ments of a time ordered product of currents, Πµν(q2) =
i
∫

d4x eiqx〈0|TJµ(x)J†ν (0)|0〉 can be computed with an
OPE in QCD and are related by a dispersion relation to
a positive definite sum over exclusive states

ImΠµν=

∫

[p.s.] δ(q−pBπ)〈0|J†ν |B̄π〉〈B̄π|Jµ|0〉 + . . . (4)

Keeping this first term bounds a weighted integral over
t+ ≤ t ≤ ∞ of the squared Bπ production form factor.
Using analyticity and crossing symmetry this constrains
the shape in t = q2 of the form factors for B → π in the
physical region 0 ≤ t ≤ t−. The results are simple to
express by writing each of f+(t), f0(t) as a series

f(t) =
1

P (t)φ(t, t0)

∞
∑

k=0

ak(t0) z(t, t0)
k , (5)

with coefficients ak that parameterize different allowed
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Fit Fermilab/MILC lattice data 
to Z expansion:
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A Precision Model Independent Determination of |Vub| from B → πlν

M. Christian Arnesen,1 Ben Grinstein,2 Ira Z. Rothstein,3 and Iain W. Stewart1

1Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
2Department of Physics, University of California, San Diego, La Jolla, CA, 92093
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A precision method for determining |Vub| using the full range in q2 of B → π"ν data is presented.
At large q2 the form factor is taken from unquenched lattice QCD, at q2 = 0 we impose a model
independent constraint obtained from B → ππ using the soft-collinear effective theory, and the shape
is constrained using QCD dispersion relations. We find |Vub| = (3.54 ± 0.17 ± 0.44) × 10−3. With
5% experimental error and 12% theory error, this is competitive with inclusive methods. Theory
error is dominated by the input points, with negligible uncertainty from the dispersion relations.

The remarkable success of the B-factories have lead to
a new era for precision results in the CKM sector of the
standard model. For |Vub| inclusive and exclusive mea-
surements from semileptonic decays should yield a precise
value, but must surmount the now dominant theoreti-
cal uncertainties. For inclusive decays measuring |Vub| is
more difficult than |Vcb| because cuts make observables
either sensitive to a structure function which demands
input from radiative decays, or require neutrino recon-
struction. The heavy flavor averaging group (HFAG)’s
average from inclusive decays based on operator product
expansion techniques is 103|Vub| = 4.7±0.4 [1]. Exclusive
techniques for |Vcb| use heavy quark symmetry (HQS) to
normalize the form factors. For |Vub| from B → π"ν̄ sym-
metry techniques fall flat, and model independent form
factor information relies on precision lattice QCD.

Recently, the Fermilab [2] and HPQCD [3] groups have
presented unquenched lattice results for B → π form
factors. Uncertainties in the discretization restrict the
kinematics to pions that are not too energetic Eπ

<∼
1 GeV, which for the invariant mass of the lepton pair
is 15 GeV2 <∼ q2 ≤ 26.4 GeV2. Unfortunately, since the
phase space goes as |$pπ|3, there are less events and more
experimental uncertainty in this region. For B̄0 → π+"ν̄

dΓ/dq2 = N |Vub|2 |$pπ|3 |f+(q2)|2 , (1)

where N = G2
F /(24π3). For example, Belle [4] found

103 |Vub|q2≥16 =

{

3.87 ± 0.70 ± 0.22+0.85
−0.51 (FNAL)

4.73 ± 0.85 ± 0.27+0.74
−0.50 (HPQCD)

(2)

where the errors are statistical, systematic, and theoret-
ical. In quadrature this is an uncertainty of ∼ 25%.

The latest Babar, CLEO, and Belle average is [5],

Br(B̄0 → π+"−ν̄) = (1.39 ± 0.12)× 10−4 , (3)

which should yield |Vub| at the % 5% level. So far extrac-
tions of |Vub| from the total Br rely on QCD sum rules [6]
and quark models for input. For example, HFAG reports
results on Br(B → {π, ρ, ω}"ν̄) that lead to central values

103|Vub| = 2.9 to 3.9 [1]. Due to the uncertainty they do
not currently average over exclusive extractions of |Vub|.

In this letter we present a model independent exclu-
sive method for determining the entire B → π form fac-
tor f+(q2) and thus |Vub|. A total uncertainty δ|Vub| %
13% is achieved by combining 1) the unquenched lat-
tice results [2, 3], 2) a constraint at q2 = 0 derived
from SCET [7] and B → ππ data, which determines
|Vub|f+(0), and 3) dispersion relations and analyticity
which allow us to interpolate over the entire region
of q2 by bounding the shape of f+(q2) between input
points [8, 9]. The SCET constraint induces an additional
implicit functional dependence on |Vub| in the form fac-
tors. Our first analysis uses just the total Br, yielding an
analytic formula for |Vub|. The second includes q2-spectra
with a χ2 minimization which allows the experimental
data to constrain the theoretical uncertainty. A differ-
ent approach for including the q2-spectra was developed
in [10] based on the Lellouch distribution method [11].

Analyticity Bounds. We briefly review how analytic-
ity constrains the B → π form factors, f+ and f0, re-
ferring to [8, 9, 12] for more detail. Our notation fol-
lows [12], and we set t± = (mB ± mπ)2. Suitable mo-
ments of a time ordered product of currents, Πµν(q2) =
i
∫

d4x eiqx〈0|TJµ(x)J†ν (0)|0〉 can be computed with an
OPE in QCD and are related by a dispersion relation to
a positive definite sum over exclusive states

ImΠµν=

∫

[p.s.] δ(q−pBπ)〈0|J†ν |B̄π〉〈B̄π|Jµ|0〉 + . . . (4)

Keeping this first term bounds a weighted integral over
t+ ≤ t ≤ ∞ of the squared Bπ production form factor.
Using analyticity and crossing symmetry this constrains
the shape in t = q2 of the form factors for B → π in the
physical region 0 ≤ t ≤ t−. The results are simple to
express by writing each of f+(t), f0(t) as a series

f(t) =
1

P (t)φ(t, t0)

∞
∑

k=0

ak(t0) z(t, t0)
k , (5)

with coefficients ak that parameterize different allowedRed, our lattice data; green, fit.

Normalization plus slope fits fine!
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B→πlν

30

Upshot:

If Becher and Hill are right, comparing shapes between theory and 
experimental form factors could be almost as simple for B->πlν as for 
B->Dlν and K->πlν:

1) Measure normalization and slope,
2) Search for evidence of curvature.

Crucial to use the right variables, though.
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Outlook: rich ferment in simulation 
methods

• Many new ideas in the last few years.

• Domain-decomposition (Lüscher; ...).

• Rational hybrid Monte Carlo (Clark and Kennedy; ...).

• Short-, long-scale separation (Peardon  and Sexton; ...).

• ...

• This makes possible

• Big overall speedups.

• Closer approach to the chiral limit for Wilson fermions.

31
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Outlook: computing

32

International Resources: Actual Speeds

Final estimates consider multiple users for Julich, KEK,
Munich, Edinburgh

Location type size peak est. perf. total

Paris-Sud apeNEXT 1 racks 0.8 TF 0.4 TF 0.4

Bielefeld apeNEXT 6 (3) racks 4.9 TF 2.5 TF

DESY (Zeuthen) apeNEXT 3 racks 2.5 TF 1.2 TF

Julich BlueGene/L 8 racks 45.8 TF 11.5 TF ×1/2? 10–15

Munich SGI Tollhouse 3328 nodes 70 TF 14 TF?? × ?

Rome apeNEXT 12 (8) racks 9.8 TF 4.9 TF 5

KEK BlueGene/L 10 racks 57.3 TF 14.3 TF

Tsukuba PACS-CS 2560 nodes 14.3 TF 3.3 TF 14–18

KEK Hitachi 2.1 TF 1 TF ?

Edinburgh QCDOC 12 racks 9.8 TF 4.2 TF 4–5

Edinburgh BlueGene/L 1 racks 5.7 TF 1.4 TF × ?

International Resources, (SciDAC AHM, April 6, 2006) S. Gottlieb – p. 10/13

The US currently has about 10 Teraflops of delivered CPU power devoted to 
lattice QCD (QCDOCs at BNL and clusters at Fermilab and JLab);
adding on at a rate of $2M/year.

Large new installations of lattice computing are planned throughout the world.

~50 TF 
planned.

Steve Gottlieb
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Outlook: simulation projects

• KEK Blue Gene: overlap.

• Tsukuba PACS-CS:  Wilson-clover.

• Julich Blue Gene: overlap, twisted mass.

• DESY, Paris, Rome apeNEXT: twisted mass.

• BNL/Edinburgh QCDOC: domain wall.

• US QCDOC/clusters: improved staggered.

33

All of the major methods for lattice fermions will be under serious 
investigation somewhere in the world.
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Summary

• There is currently more activity and progress in 
methods and algorithms than there has been since 
20 years ago.

• 10s of teraflops in CPU power devoted to lattice 
QCD are now coming on line.

• Many of the most important results for 
phenomenology are among the cleanest lattice 
calculations (such as pseudoscalar meson decay 
constants and mixings).

34

We’re in a period of rapid development for lattice QCD that 
shows no signs of slowing down.


