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Lattice QCD calculations have made
terrific progress in recent years.

e Simple quantities agree with experiment to a few %.

e A few quantities have been predicted ahead of
experiment.

e [ attice calculations are playing an increasingly
essential role in analysis of experiment.
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Quantities that used to agree ... agree to a few % in recent
decently, ~10%, in the ungquenched calculations.
guenched approximation...
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"Gold-plated quantities™ of
lattice QCD

Quantities that are easiest for theory and experiment to
both get right.

Stable particle, one-hadron processes. Especially mesons.

More complicated methods are required for multihadron

processes:
- unstable particles are messy to interpret,
- multihadron final states are different in Euclidean and

Minkowski space.
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Three families of lattice fermions

e Staggered/naive

e (ood chiral behavior (can get to light quark masses), but fermion
doubling introduces theoretical complications. Cheap.

e \Wilson/clover

e No fermion doubling but horrible chiral behavior.

e QOverlap/domain wall

® Nice chiral behavior at the expense of adding a fifth space-time
dimension. Expensive.

The various methods have wildly incommensurate virtues and
defects.

Staggered fermion calculations are the cheapest and currently
most advanced phenomenologically.
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Progress, but also need and opportunity

For some quantities, only lattice calculations can unlock the
complete potential of experimental measurements.
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Bucholz, FPCP 2006

BB mixing
BsBs mixing

Lattice QCD needs
to deliver these
quantities reliably.
Or else.
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In this talk...

e Concentrate on lattice CKM physics phenomenology.

e Unqguenched, 2+1 light flavors where possible.

e (Concentrate on gold-plated quantities.

e Other interesting things (order of increasing difficulty)
e <B|O|B> expectation values for HQET, etc. (Doable now.)
® KTTTT. (Doable now, but harder. People are trying.)

e Broad unstable states. (Being done now, but will be hard to get right.)

® BTr1r.  (Nobody’s trying.)

Thanks, Steve Gottlieb, Richard Hill, Uli Nierste, Masataka Okamoto.
See Okamoto review at Lattice 2005.
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Outline

e [ntroduction

e CKM matrix elements
e Decay constants
e MM mixing
e Semileptonic decays

e QOutlook
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CKM matrix elements

All of the CKM matrix elements except Vi can be determined
from one of lattice QCD’s golden quantities.

/ \ For some, like Vig and Vi,
n—Ilv K-—wnlv B—mlv lattice calculations are the
only road to accurate

D—owiv D—Kiv B—D® determinations.

D—lIlv D;—lv

\ <Bd,l—3d> <Bs,§5> /
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fD, st

CLEO-c charm physics and the lattice:

e Tests lattice’s ablility to accurately calculate

amplitudes by producing new measurements of CKM

iIndependent quantities that can be checked with the
lattice, such as B(D — Iv) .

B(D — mtlv)

o \With good lattice calculations, measures CKM charm
matrix elements: Vs and Ve,

Paul Mackenzie
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Q = val sea 3
f f =S 0] m,=m)e a=0.12 fm (MILC coarse) -
D y D S X E — SyPT fit (to 60 PQ points)
Q. 120 =
=5 — SyPT fit (da°->0)
= 1.10 F-
S~ S
fD :201(03)sta(17)sys MeV 100, o L T
0.0 0.2 0.4 0.6 0.8 1.0 1.2

m /m
q S

fp, = 249(03)5ta(16)sys MeV

Fermilab/MILC, 05. ns=2+1 staggered light quarks.
e Fermilab heavy quarks.
fo — zoz(lz)sta(jgg)sys
st — 238(11)8'[&(1_8;)8}78 MeV

CP-PACS, 05. n=2 clover light quark.
“RHQ” heavy quarks.

Com pare with CLEO-c CLEO error dominated by statistics,

will be reduced with full data set.

Assumes canonical V.

Lattice error dominated by discretization error
(done on a single lattice spacing).
Will be reduced by in progress calculations on multiple

fo. = (201£3417) MeV
lattice spacings. LQCD (PRL 95 251801, ’05)

CLEO-c. R. Poling, FPCP 2006.
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fy [MeV]  fg [MeV] fo /fa

Dominant uncertainty in fg:

HPQCD 05. n=2+1 staggered light quarks, O(o?) perturbation theory.

NRQCD heavy quarks.

Dominant uncertainty in fzs/s:
Statistics and chiral extrapolation.
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& Coarse lattice, Partially Quenched
® Coarse lattice, Full QCD

A Fine lattice, Full QCD

— Full QCD continuum ChPT —

Linear fit, no chiral logs

— Full QCD Staggered ChPT
o JLQCD (Nf=2)

- — Linear fit to JLQCD _

\
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fB, st

Compare with new
Belle result for fs:

CKM constraint is fit using
B—T1Vv/AMg.
(fs drops out.)

Much tighter constraints can be
obtained by incorporating lattice fs

and Bg (<15%). -

Paul Mackenzie
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fp=0.176

-0.5

<y =t

Using |V,,| = (4.38%0.33) X 103 from HFAG

fg;ggs? (stat) fg_gfg (syst) GeV

f, = 0.216%0.022 GeV (HPQCD)

Phys. Rev. Lett. 95, 212001 (2005)
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FPCP 2006
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l J [ L 1

-0.5

0

0.5 1 1.5 2
tion, April 9-12, 2006 13

gell



fK, f]T

fn =128.1+0.54+2.8 MeV, fK = 153.5£0.54+2.9 MeV

fi/fr = 1.198(3)(*'9)

="> [Vis| = 0.2242(13})

(cf. 0.2200(26) (old):
0.2262(23) (new).)

Chiral extrapolation of fx.

Leptonic decay experiment + “old” Vis.

Leptonic decay experiment + “new” Vis.
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0.21

0.20

A7

MILC 05. n=2+1 staggered.

Light quark masses essential.

—— full, cont., m

S -

LS extrap [systematic error-

X expt. [V, from PDQ, or new expts.H

0.10 0.12 0.14

(mx-l_my)rl X (Zm/zine>
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B.(NDR, 2GeV) vs. m a ..

q*=1/a, 3-loop coupling, 5 points

KK Mixing .

Benchmark calculation for years wasys
JLQCD 97, staggered fermions.
Quenched!

0.7 - ]
Bx(NDR,2GeV) = 0.628(42)
06 L O non—invariant |
Tons of CPU power to get to light - nariant
quark masses. os | | | |
-0.2 0.0 0.2 0.4 0.6 0.8

Now a field of hot activity
Lots of investigations of new methods.
At least two 2+1 programs started

See Dawson, Lattice 2005.

Paul Mackenzie
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BB Mixing @ aban i <

(B°|(bq)v—-a(bg)v-alB°) = Bs,f,

2 * 2
AMBd(s) > BBd<s>de(s> | thtd(s)|

B(my) = 0.836(27)(25) [ S/B_1017(16)(+56)J

JLQCD, 03
nf=2 clover light,
NRQCD heavy quarks.

Combine with HPQCD fs to obtain:

fg\/Bg = 244(26)MeV

|th|Lat()5 — 7.4(0.8)><10_3)
(‘th‘PDGO4 — 8.3(1.6)><10_3)
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BsBs Mixing

DO: 17<Ams<21 ps-1 @90% CL; 2.30

D.Bucholz, ™
FPCPO6 SR

CDF: Talk by Guillelmo Gomez-Ceballos, 3PM, today.

Combining

and

-
fBS/fB — 1-20(3)sta—|—xﬁt(1)others
PT error cancel = total 3%

~N

Okamoto obtains fBS/fB\/BBS/BB =

Paul Mackenzie

. J

4 )
B/B=1.017(16)(39)

. J

HPQCD

JLQCD

1.210(*4))
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BsBs Mixing

Effect of DO result on CKM fits:

‘,_,...,..,.,
[ g < &
al ;i

Impact on the Umtamjy T mmgle

1.5

| xcluded a

hasCL 095|

lllllllll

Cut and pasted from Okamoto’s
Lattice 2005 review transparencies:

fBS/fB\/BBS/BB = 1.210(730)

\

J

Paul Mackenzie

D. Buchholz

0(|Vial/|Vis|) = 3—4%

with forthcoming AMp,
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BsBs Mixing

Effect of DO result on CKM fits:

1.5

Paul Mackenzie

xcluded a

h CL>095 | |

‘ﬁ/
%0'
C()

sol. w/ cos 2[3<_-.0"'. \
(excl. atCL>0.95)

Impact on the Umtamty T mangle

Cut and pasted from Okamoto’s
Lattice 2005 review transparencies:

fBS/fB\/éBS/éB = 1.210(*30)

~

v,

A P

D. Buchholz

0(|Vial/|Vis|) = 3—4%

with forthcoming AMp,
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BsBs Mixing

+0.041 ps'1 Van Kooten
-0.042 FPCP 2006

AT, = 0.097

T=_1 =1.461=0.030ps
['s

New operator needed: Qs = brsy brsy

Not done unquenched, but Becirevic et al., 01, have calculated
the complete set of four-quark operators quenched:

O1= ?Wl _75??% Pl = 7)a’ B (1my) = 0.87(4)(3)(0) (F4) , B (my) = 0.87(2)(3)(0) (£4)
712 o ') o 9 o -
O2 = V1 =1s)' P =2, B3 (my) = 0.83(3)(3)(1)(2), BS™S (my) = 0.84(2)(3)(1)(2)
Os = Bl =) b1 =%)d, B (1) — 0.90(6)(3)(7)(2) , BE™ (my) = 0.91(3)(3)(7)(2)
Os = B(1—5)q b (1 +5)¢’ 3 () =0 3 (me) =0, ’
T T VR (d)MS _ +0 (s)MS _ +0
On = Tl Fl1+ o) B (1my) = 1.15(3)(4) (9) (3), BV (my) = 1.16(2) (4) (*2) (3)
5= 154 18I @MS, | _ 1o (NS, 20
B;"™ (my) = 1.72(4)(5) (Tg0) (3), Bs™ ™ (ma) = 1.75(3)(5) (T50) (3)

Now must be repeated, unquenched.
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B— DN

Form factor shape is well-measure in experiment.
Theory must supply the normalization.

Heavy quark theory: normalization —1 in the HQ symmetry limit.
But, high precision is required.

Ratio method: determine the form factor from a quantity which goes to 1 with vanishing
errors in the symmetry limit.

<D Vo B> <B|V()|D> Fermilab 99.
(DIVo|D)(B|Vy|B)

b | | | ; | - .‘TB—>D(1) — 1074 (18)Sta(15)8y3
| . ’ :
= | % ! | - ,
| % N2t (FNALMILG) Using HFAG'04 avg for V| F (1)12

- B—>Do N=0 (FNAL'99) | Vep|Latos =3.91(09)1a¢(34) exp % 10

0 0.01 0.02 0.03
m,

Fermilab/MILC 05.

Paul Mackenzie Flavor Physics and CP Violation, April 9-12, 2006
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K— 1TIV

Similar situation. Amplitude is normalized to1 in the (chiral) symmetry limit.

f+(0):
Leutwyler-Roos quark model {0.961(8)
Becirevic et al. ni=0 0.960(5)(6)
JLQCD n=2 0.952(6)
Fermilab/MILC n=2+1 0.962(6)(9)
RBC n=2 0.964(9)(5)

No surprises from theory.
KI3 experiment explains the first row unitarity puzzle.

Paul Mackenzie

Rome (Becirevic et al.) 04: try the same approach, the ratio method.
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D— {K, T} v

CLEO-c/lattice charm physics goals:
- Test lattice amplitude calculations on CKM independent combinations of amplitudes.

- Use tested lattice calculations to obtain new CKM determinations.

Test lattice:
R _ Q;(D — l\/) o~ fD . Md
“ =\ B(D - nlv) D=(0) | Mea

Fermilab/MILC

Re=0.22(2) "~ 5

R.=0.25(2)  CLEO-c

Paul Mackenzie Flavor Physics and CP Violation, April 9-12, 2006 23
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D— {K, T} v

A prediction: shape of the D— K I form factor.

2.5_I L L | L | L L L L L | !

D — Klv

1.5
— n
o
Ny = |
N~ N |
< [ ¢ I
|
1 |
B |
& I
|
N |
|
0.5 B & experiment [Belle, hep-ex/0510003] [
— lattice QCD [Fermilab/MILC, hep-ph/0408306] :
|
= |
O | I | | | I | | | I | | | I | | | I | | | I | | | I | | | I | | [
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
2 / 2
m.
q /mps

CLEO-c is threatening to drastically improve. = More stringent tests.
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D— {K, T} v

Apply: determine CKM elements.

Decay Mode V.| £ (stat) £ (syst) = (theory) PDG (HF) Value
D% — mtev 0.221 £0.013 £ 0.004 + 0.028 0.224 +0.012
D° — Ktev 1.006 +£0.042 + 0.013 £0.103 | 0.996 +0.013 (0.976 + 0.014)
D* — nlev 0.235 +£0.016 £ 0.006 + 0.029 0.224 +0.012
D* — Klv 0.984 +0.042 £0.017 £0.101 | 0.996 £0.013 (0.976 + 0.014)

CLEO-c. R. Poling, FPCP 2006.
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B— 1TV

Lattice data cover on 1/3 of physical g2 range. 2

More challenging to compare with experiment than
anything else covered in this talk.

I'll discuss here how to go beyond current methods,

rather than current results. 0.5 |

Approaches:

- Moving NRQCD (HPQCD)
- Add SCET point at g?=0 (Arnesen et al.)

Arnesen, Rothstien, Grinstien, and Stewart
add SCET point at g=0 to lattice data, use
unitarity and analyticity to bound form
factor.

What do unitarity and anlyticity alone say?

15 [

L

N.=3 (HPQCD)
e N=3 (FNAL/MILC)

Paul Mackenzie

Flavor Physics and CP Violation, April 9-12, 2006

26



Jt
A

B— 1TV

The function

Vie =1 =Ty —to

2(t, tg) =

maps the physical g region into

The form factors can be written

f(t) =

1

@)

NG

Accounts for
B* pole.

o(t, to)

O

Vie =T+ /Ty —to

B->11 [ V:
D->11 /v :
D->K |V :
B->D v :

ap(to) z(t, to)"

Calculable function to
make aks look simple.

nAa

Unitarity requires just that Z ai <1

Paul Mackenzie

k=0

(t=09? = (pH-pL)?, t+=(mMu+tmL)?, t. = (MmH-mL)?).

-0.34<z<0.22,

-0.17<z<0.16,

-0.04<z<0.06,
-0.02<z<0.04.

According to the unitarity bound, even
for B->miv, 5 or 6 terms in series suffice
for 1% accuracy.
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B— 1TV

Becher and Hill (Richard Hill talk, later this morning): In

10 = 750 > aulto) =(tto)

Y ap  of order (A/my)3

k=0

Two (maybe three) terms should suffice in power series for 1%
accuracy in form factors.

Test on lattice results:

Paul Mackenzie Flavor Physics and CP Violation, April 9-12, 2006 28
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Fit Fermilab/MILC lattice data
to Z expansion:

Our form factor data for
B—miv, chirally
extrapolated.

f+(a?)
Replot of our data vs. z
and fit with P and phi
removed.
> an(to) 2(t, to)"
k=0

Red, our lattice data; green, fit.

Normalization plus slope fits fine!

Paul Mackenzie
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B— 1TV

Upshot:

If Becher and Hill are right, comparing shapes between theory and
experimental form factors could be almost as simple for B->mriv as for
B->DIiv and K->1TIV:

1) Measure normalization and slope,
2) Search for evidence of curvature.

Crucial to use the right variables, though.

Paul Mackenzie Flavor Physics and CP Violation, April 9-12, 2006 30



R

Outlook: rich ferment in simulation
methods

e Many new ideas in the last few years.
® Domain-decomposition (Luscher; ...).
e Rational hybrid Monte Carlo (Clark and Kennedy; ...).

e Short-, long-scale separation (Peardon and Sexton; ...).

e This makes possible

e Big overall speedups.

e C(Closer approach to the chiral limit for Wilson fermions.
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Outlook: computing

The US currently has about 10 Teraflops of delivered CPU power devoted to
lattice QCD (QCDOCs at BNL and clusters at Fermilab and JLab);
adding on at a rate of $2M/year.

Large new installations of lattice computing are planned throughout the world.

Location type size peak est. perf.
Paris-Sud apeNEXT 1 racks 0.8 TF 04TF
Bielefeld apeNEXT 6 (3) racks 49 TF 25TF
DESY (Zeuthen) apeNEXT 3 racks 2.5 TF 1.2TF ~50 TF

Julich BlueGene/L 8 racks 458 TF | 11.5TF x1/2? p|anned_
Munich SGI Tollhouse | 3328 nodes 70 TF 14 TF?? x ?
Rome apeNEXT 12 (8) racks 9.8 TF 49 TF
KEK BlueGene/L 10 racks 57.3TF 14.3 TF
Tsukuba PACS-CS 2560 nodes | 14.3 TF 3.3TF
KEK Hitachi 21 TF 1TF ?
Edinburgh QCDOC 12 racks 9.8 TF 4.2 TF
Edinburgh BlueGene/L 1 racks 5.7TF 1.4TF x ?

Steve Gottlieb
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Outlook: simulation projects

All of the major methods for lattice fermions will be under serious
iInvestigation somewhere in the world.

e KEK Blue Gene: overlap.

e Tsukuba PACS-CS: Wilson-clover.

e Julich Blue Gene: overlap, twisted mass.

e DESY, Paris, Rome apeNEXT: twisted mass.

e BNL/Edinburg
e US QCDOC/c

Paul Mackenzie

N QCDOC: domain wall.

usters: improved staggered.
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Summary

e There is currently more activity and progress in
methods and algorithms than there has been since
20 years ago.

e 10s of teraflops in CPU power devoted to lattice
QCD are now coming on line.

e Many of the most important results for
phenomenology are among the cleanest lattice
calculations (such as pseudoscalar meson decay
constants and mixings).

We're in a period of rapid development for lattice QCD that
shows no signs of slowing down.
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