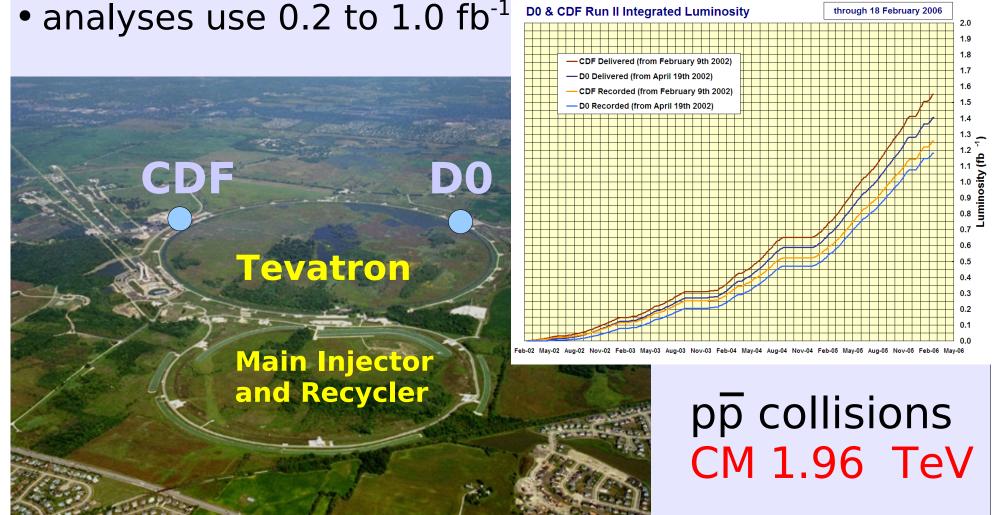

Heavy Flavor Spectroscopy at the Tevatron

Ilya Kravchenko

MIT

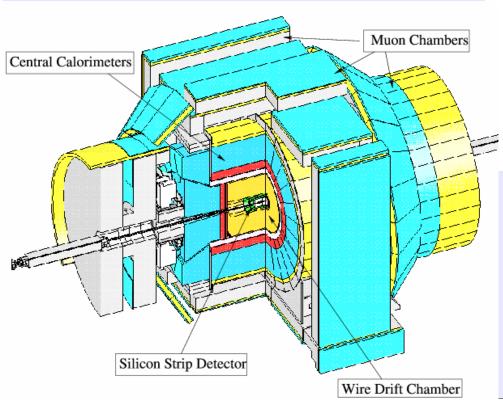

Topics

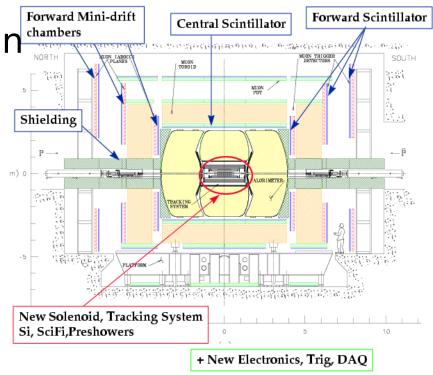
- b hadron production
- •X(3872) studies
- •B_c observation and properties
- orbitally excited B mesons

Tevatron

• machine delievered >1.5 fb⁻¹

• CDF and D0 recorded >1.2 fb⁻¹ each

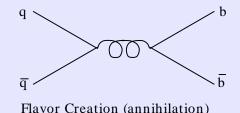

D0 Upgrade

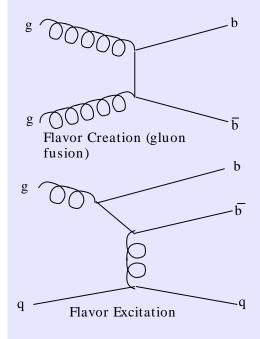

CDF and D0 Experiments

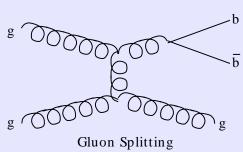
CDF:

• great m, imp.par. resolution

- displaced track triggers
- triggered μ to $|\eta| < 1.1$
- particle ID with dEdx, ToF






D0:

- triggered μ to $|\eta| < 2.0$
- good electron ID
- trigger tracking to $|\eta| < 2.0$

Heavy Flavor Physics at Tevatron

Tevatron is great for heavy flavor:

- b production x-section x1000 than at e⁺e⁻ B factories
- all b and c hadrons produced
 - B^0 , B^+ , B_s , Λ_b , B_c , Ξ_b , etc
 - D⁰, D⁺, D_s, Λ_c , χ_c , Ξ_c , X(3872), etc

However:

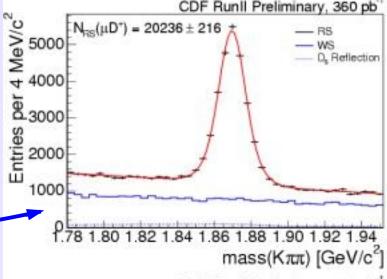
- inelastic (QCD) background is x1000 higher than b x-section
- online triggering and reconstruction is a challenge
- collision rate ~1 MHz, writing to tape at ~100 Hz

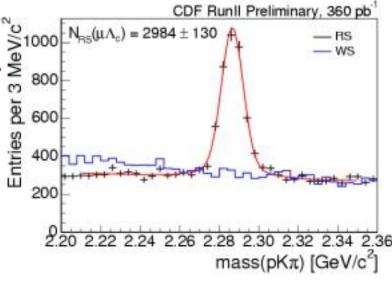
b Hadron Production Fractions

Rate of b quark fragmentation to form mesons and baryons:

- f_u , f_d , f_s and $f_{\Lambda b}$ probabilities that b fragments to B^0 , B^+ , B_s or Λ_b
- non-perturbative: has to be measured
- interesting to compare e⁺e⁻(LEP) with pp̄(Tevatron)

CDF reconstructs final states:


$$l^-D^0$$
 \underline{l}^-D^+ l^-D^{*+} $l^-D_s^+$ $\underline{l}^-\Lambda_c^+$


Sample composition:

- different B mesons same final states
- cross-talk via excited states, disengangled

Particle ID likelihood cuts (dE/dx):

ightharpoonup important to clean up the $\Lambda_{\rm c}$ signal

b Hadron Fractions: results

Using semileptonic B and Λ_b decays, CDF measures on 360 pb⁻¹:

• relative fractions f_u/f_d , $f_s/(f_u+f_d)$ and $f_{\Lambda b}/(f_u+f_d)$ (reduce sytematics)

$$\frac{f_s}{f_u + f_d} \times \mathcal{BR}(D_s^+ \to \phi \pi^+) = (5.76 \pm 0.18(stat)^{+0.45}_{-0.42}(sys)) \times 10^{-3}$$

$$\frac{f_{\Lambda_b}}{f_u + f_d} \times \mathcal{BR}(\Lambda_c^+ \to pK^-\pi^+) = (14.1 \pm 0.6(stat)^{+5.3}_{-4.4}(sys)) \times 10^{-3}$$

$$\frac{f_{\Lambda_b}}{f_u + f_d} \times \mathcal{BR}(\Lambda_b^0 \to \ell\nu\Lambda_c^+) \mathcal{BR}(\Lambda_c^+ \to pK^-\pi^+) = (12.9 \pm 0.6(stat) \pm 3.4(sys)) \times 10^{-4}$$

Using World's best Br available, CDF derives:

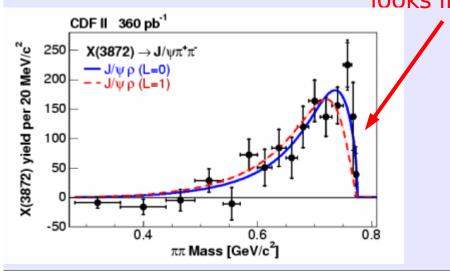
$$\frac{f_u}{f_d} = 1.054 \pm 0.018(stat)^{+0.025}_{-0.045}(sys) \pm 0.082(\mathcal{BR})$$

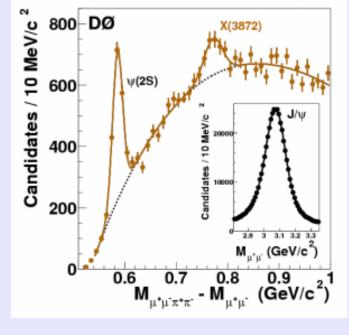
$$\frac{f_s}{f_u + f_d} = 0.160 \pm 0.005(stat)^{+0.011}_{-0.010}(sys)^{+0.057}_{-0.034}(\mathcal{BR})$$

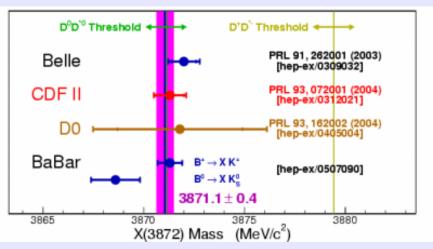
$$\frac{f_{\Lambda_b}}{f_u + f_d} = 0.281 \pm 0.012(stat)^{+0.058}_{-0.056}(sys)^{+0.128}_{-0.086}(\mathcal{BR}).$$

 $f_{\Lambda b}$ higher then LEP by ~2.2 σ

The mystery of X(3872)

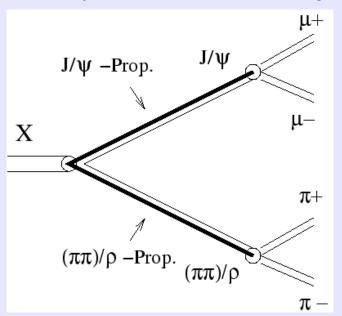

Aug'03: Belle annonunces discovery of $X(3872) \rightarrow J/\psi \pi^+ \pi^-$


What is it? Pros/cons for any explanation


- DD* molecule?
- Excited ccbar state

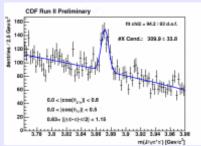
Results from CDF and D0 rapidly follow

- observation and mass at ppbar
- production properties, prompt fraction
 - \rightarrow consistent with $\Psi(2S)$
- $(\pi\pi)$ mass spectrum:
 - → first glimpse of quantum numbers
- See: hep-ex/0505083, hep-ph/0506222, hep-ph/0508258
 looks like J/Ψ ρ

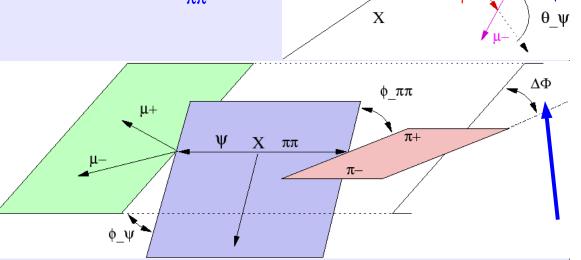


X(3872): angular analysis

CDF seeks to determine J^{PC} of the X(3872)


a sample of ~3000 of X(3872) candidates with 780 pb⁻¹ of data derive predictions for decay angle distributions for different J^{PC}

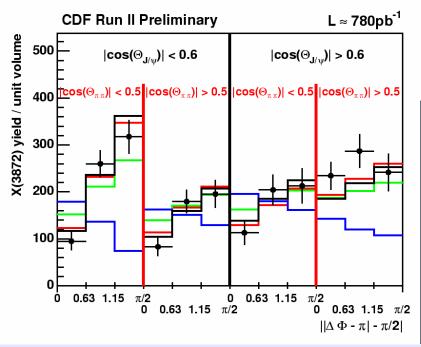
L=0 or 1 assumed for $(\pi\pi)$ system


Example:

θ ππ

Fit m(X) in 3x2x2 subsamples

- 3 bins in $\Delta \Phi$
- 2 bins in cos Θ_w
- 2 bins in $\cos \Theta_{\pi\pi}$



X(3872): results for J^{PC}

Simultaneous fit of 3 angles: $\Delta \Phi$, Θ_{ψ} and $\Theta_{\pi\pi}$

12 data points from mass fits

Derive probability: many J^{PC} hypotheses

X(3872)

data points

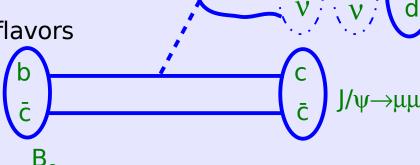
Fit model

hypothesis	$3D \chi^2 / 11 \text{ d.o.f.}$	χ^2 prob.
1++	13.2	27.8%
2-+	13.6	25.8%
1	35.1	0.02%
2+-	38.9	$5.5 \cdot 10^{-5}$
1+-	39.8	$3.8 \cdot 10^{-5}$
2	39.8	$3.8 \cdot 10^{-5}$
3+-	39.8	$3.8 \cdot 10^{-5}$
3	41.0	$2.4 \cdot 10^{-5}$
2++	43.0	$1.1 \cdot 10^{-5}$
1-+	45.4	$4.1 \cdot 10^{-6}$
0-+	103.6	$3.5 \cdot 10^{-17}$
0+-	129.2	$\leq 1.10^{-20}$
0++	163.1	$\leq 1.10^{-20}$

Result:

- only $J^{PC}=1^{++}$ and 2^{-+} fit data
- all others excluded by $>3\sigma$

Cross-check on $\Psi(2S)$:


same final state, J^{PC} reproduced

10

B_c: introduction

Bound state of two heavy quarks (bc)

- good lab for potential models, lattice QCD
- B_c the only meson with different heavy flavors
- only weak decays possible

Experimental knowledge:

- first observed by CDF in '98 in semileptonics
 - properties not well measured
- higher statistics in Run II
 - more precise lifetime
 - access to exclusive modes ⇒mass measurement

Challenging: low production rate

- $B^0:B^+:B_s:\Lambda_b\approx 40:40:10:10, B_c\sim 0.5\%$
- short lifetime ⇒difficult selection

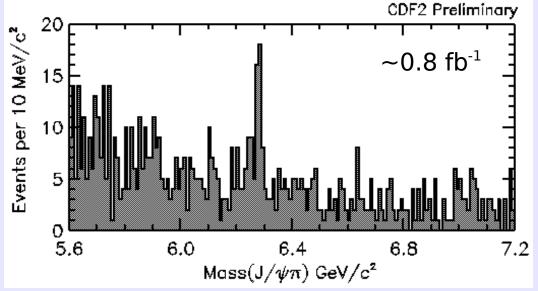
B_c: observation and mass

We reconstruct B_c in 3 channels:

$$B_c \rightarrow J/\psi e \nu$$
 CDF

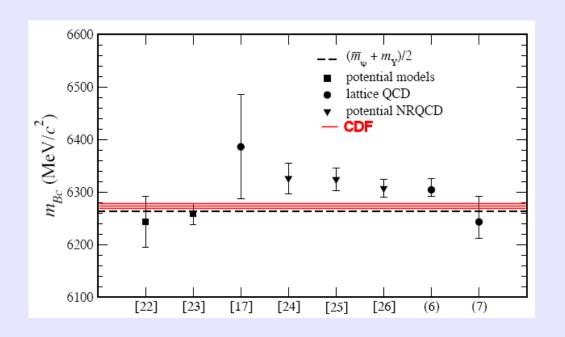
$$B_c \rightarrow J/\psi \, \mu \nu$$
 CDF, D0

$$B_c \rightarrow J/\psi \pi$$
 CDF


semileptonics: good for lifetime (sufficient yields)

} hadronic decays: good for mass
 (fully reconstructed)

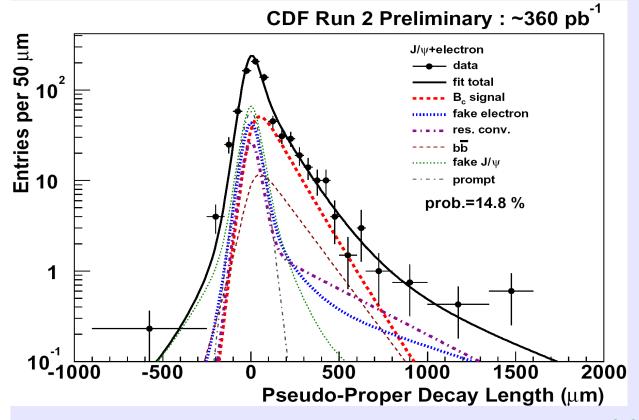
At present, 6σ or more signal is observed in all these channels!


CDF: fully reconstructed ${\rm B_c} \to {\rm J/\Psi} \pi$ sample for mass measurements

 $M(B_c)=6275.2\pm4.3\pm2.3 \text{ MeV/c}^2$

B_c: lattice results vs CDF

Lattice calculations show moderately good agreement with the CDF measurement of the B_c mass



theory: PRL 94, 1720001 (2005)

$$M(B_c)_{CDF} = 6275.2 \pm 4.3 \pm 2.3 \text{ MeV/c}^2$$

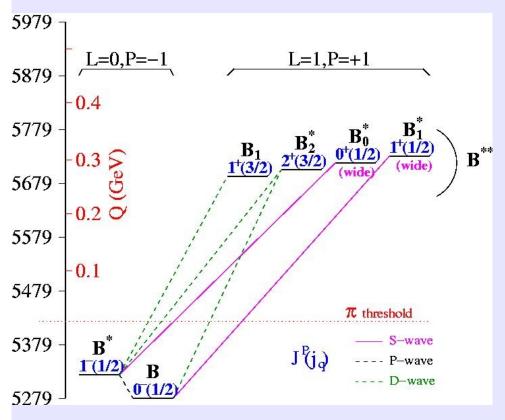
 $M(B_c)_{LAT} = 6304 \pm 12^{+18}_{-0} \text{ MeV/c}^2$

B_c: lifetime measurement

• Bc lifetime extracted from $B_c \rightarrow J/\psi l \nu$ samples

- more stat than hadronic mode
- but also more background too

World's best


CDF: lifetime measured in J/ Ψ e channel: $0.474^{+0.073}_{-0.066} \pm 0.033$ ps on 360 pb⁻¹

D0: J/ $\Psi\mu$ channel: $0.448^{+0.123}_{-0.096} \pm 0.121$ ps on 210 pb⁻¹

Theoretical prediction: 0.55 ± 0.15 ps (V. Kiselev, hep-ph/0308214)

B**: introduction

 B^* and B^{**} or B_l : first orbital excitations of $(b\bar{q})$ system

Qualitative picture well understood:

- 4 P-wave states: B*₀, B*₁, B₁, B*₂
- B*₀, B*₁ are wide (~100 MeV)
 states, decay via S-wave
- B₁, B*₂ are narrow (~10 MeV) states, decay via D-wave
- $B*_2$ can decay to $B*\pi$ and $B\pi$
- B_1 can decay only to $B^*\pi$

Quantitative understanding is worse:

ullet predictions for m, Γ and decay properties depend on many model parameters

From Tevatron: focus on narrow states for now

B** narrow states from D0

Decay channels: find $B^{**} \rightarrow B^{(*)} \pi^{-}$ as

$$B_1^0 \to B^{*+} \pi^-; \quad B^{*+} \to B^+ \gamma$$
 $B_2^{*0} \to B^{*+} \pi^-; \quad B^{*+} \to B^+ \gamma$

$$\mathsf{B}_2^{*0} \to \mathsf{B}^+ \pi^-$$

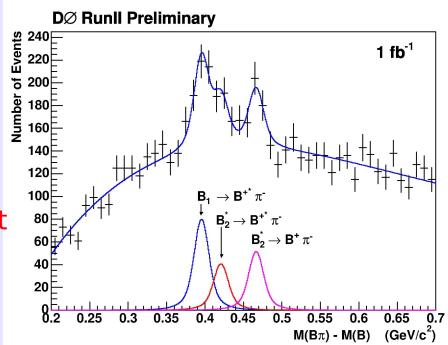
Reconstruction:

- based on 16K of $B^+ \rightarrow J/\psi K^+$ candidates
- photon in B*→γB not reconstructed

Add events from all 3 modes, fit mass difference $M(B\pi) - M(B)$

Constrained:

- $\Gamma(B_1) = \Gamma(B_2^*) = \Gamma$ from theoretical expectations (Γ floats)
- also, M(B*)-M(B+)=45.78 MeV/c2 [PDG]


B**: results from D0

First observation of separate peaks

$$M(B_1) = 5720.8 \pm 2.5 \pm 5.3 \text{ MeV/c}^2$$
 $\frac{100}{5}$ $\frac{200}{100}$ $\frac{100}{5}$ $\frac{100}{5$

The only narrow width measurement

$$\Gamma(B_1) = \Gamma(B_2^*) = 6.6 \pm 5.3 \pm 4.2 \,\text{MeV/c}^2$$

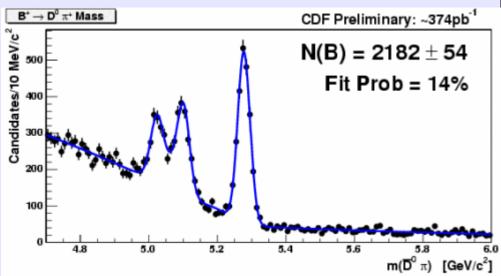
Production rates:

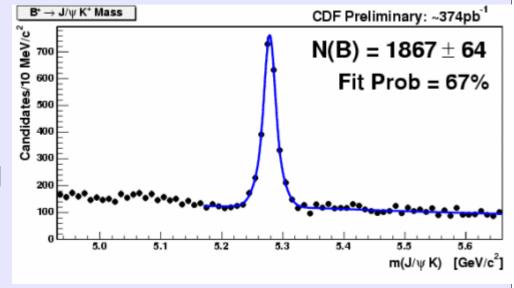
$$\frac{BR(b \to B_J^0 \to B\pi)}{BR(b \to B^+)} = 0.165 \pm 0.024 \pm 0.028$$

$$\frac{BR(B_2^* \to B^* \pi)}{BR(B_2^* \to B^{(*)} \pi)} = 0.513 \pm 0.092 \pm 0.115$$

$$\frac{BR(B_1 \to B^{*+}\pi)}{BR(B_J \to B^{(*)}\pi)} = 0.545 \pm 0.064 \pm 0.071$$

B** narrow states from CDF


Reconstruct $B^{**0} \rightarrow B^{(*)+} \pi^{-}$:


- B⁺ decay: B⁺ \rightarrow J/ ψ K⁺
- and $B^+ \rightarrow D^0 \pi^+$

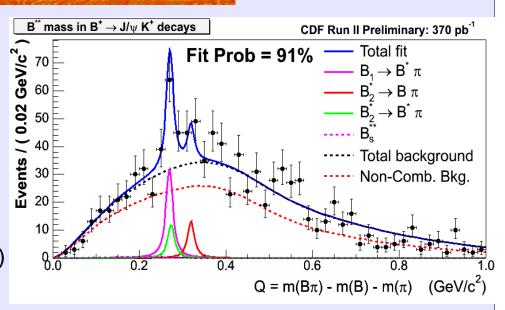
Events in sidebands of B⁺ mass are later used to determine the combinatorial

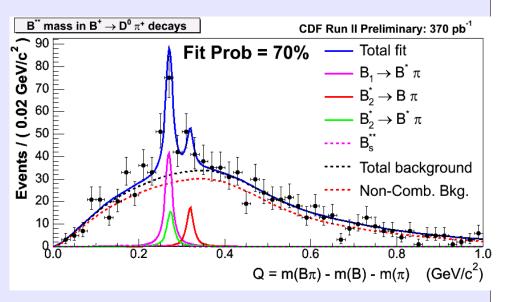
background in B** mass fits

 D^* background to $D^0\pi^+$ is suppressed in selection

B**: results from CDF

Fit $M(B\pi)-M(B)-M(\pi)$ simultaneously for all channels


Low statistics \Rightarrow fix width to theoretical value $\Gamma(B_2^{*0}) = 16 \pm 6 \text{MeV/c}^2$ (hep-ph/9507311)


• also, fix $\Gamma(B_1^0) = \Gamma(B_2^{*0})$

Fix
$$\frac{Br(B_2^{*0} \to B^*\pi)}{Br(B_2^{*0} \to B\pi)} = 1.1 \pm 0.3$$
Delphi 2004-
025 conf 700

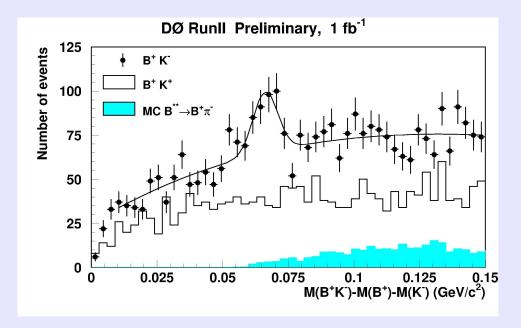
Precise mass measurements:

$$M(B_1^0) = 5734\pm3\pm2MeV/c^2$$

 $M(B_2^{*0}) = 5738\pm5\pm1MeV/c^2$

Search for B*_{s2} at D0

B**_s: similar hierarchy of orbital excitations as for B**


- wide states B*_{s0} and B*_{s1}
- narrow states B_{s1} and B*_{s2}
- even less well studied than B**

The signature:

- due to isospin conservation decays to $B_s\pi$ highly suppressed
- search for excited states decaying to B⁺K⁻
- use the same $B^+ \rightarrow J/\psi K^+$ sample as for the B^{**} search
- 1 fb⁻¹ of data

B*_{s2:} first direct observation

Fit mass difference: M(B⁺K⁻)-M(B⁺)-M(K⁻)

First direct observation of B^*_{s2} , significance of the peak >5 σ !

$$M(B*_{s2})=5839.1\pm1.4\pm1.5 \text{ MeV/c}^2$$

Checks:

- no evidence of the peak in the wrong sign BK
- no "bump" in Monte Carlo spectrum from B** decays

Summary

Precision measurements of b and c properties

- CDF narrowed J^{PC} of X(3872) to 2 possibilities!
- B** states (d and s) are now being resolved and precisely measured!
- B_c mass is now well measured!

Good times for heavy flavor physics at Tevatron: on the way to collecting multi-fb⁻¹ of data

While this talk is restricted spectroscopy, check out other talks from CDF and D0 with new exciting results on heavy flavor