Experimental Status of sin2β Measured from b→s Penguin Decays

Mathew Graham

SLAC

FPCP06: Vancouver April 9, 2006

Time-Dependent CP-Violation

Measuring sin2 β with charmless B-decays

B⁰→J/ψK⁰ BR~ 10⁻³ sin2β=0.69±0.03

^{B⁰→₀K⁰} BR~ 10⁻⁵

Sources of Standard Model pollution

There are many modes that dominantly decay via $b \rightarrow s(q\overline{q})$...but not all modes were created equal

Expected deviations from sin2 β

2-body: [Beneke; PL B620, 143 (2005)] 3-body: [Cheng,Chua,Soni; PRD72, 094003 (2005)] There are various estimates for the deviation from sin2β due to SM pollution...most of them expect a *larger* value!

Measuring the rates of related modes help to pin down the magnitude of these deviations

Status of the B-Factories

Belle: 500 fb⁻¹; current results based on 357 fb⁻¹
(almost) all results from hep-ex/0507037 and are preliminary
BaBar: 330 fb⁻¹; current results based on 210 fb⁻¹
results come from variety of publications

Detecting a signal...in general

largest source of background comes from qq interactions
 use ΔE, m_{ES}, and event shape to discriminate signal from background
 in case of quasi-2 body modes (φK⁰, n'K⁰, etc) can also us

 in case of quasi-2 body modes (φK⁰, η'K⁰, etc) can also use invariant mass and helicity information

Tagging the B and measuring Δt

The Δt resolution function obtained from high stat. B \rightarrow DX Events tagged using the charge of the leptons, kaons, pions Effective tagging efficiency (including mistag-rate) ~30%

The "golden" mode: **φK0**

 Considered the "golden" mode" because it's almost pure $b \rightarrow s\bar{s}s$ •Use both ϕK_s and ϕK_l

BaBar:
$$N(\phi K_s) = 114 \pm 12$$
 $N(\phi K_L) = 98 \pm 18$ **Belle:** $N(\phi K_s) = 180 \pm 16$ $N(\phi K_L) = 78 \pm 13$

•No energy measurement for the K_1 ...constrain m_{FS} to m_B

fit both the Ks and KL samples to a common S/C
good agreement between experiments!

SM pollution to ϕK^0 : $\phi \pi$

NEW for '06

SM pollution to ϕK^0 : K*⁰K

•The K_s fly...utilize the beam spot constraint in order to determine the vertex...

•Allow (at most) one K_s to decay to $\pi^0\pi^0$

BaBar: N(3K_s)= 129 ± 13 **Belle:** N(3K_s)=105 ± 12

K_sK_sK_s time-dependent results

one of the cleanest modes w/r to SM pollution
also quite clean experimentally because of the 3K_s's

Preliminary

BaBar:sin2β=0.63±0.30±0.04C=-0.10±0.25±0.05Belle:sin2β=0.58±0.36±0.08C=-0.50±0.23±0.06

 $\begin{array}{l} \textbf{BaBar:}\\ N(K_sK_sK_L) = 23.0 \pm 23 \pm 6\\ ----Assuming \ phase \ space\\ BR(K_sK_sK_L) < 6.4 \times 10^{-6}\\ ----No \ Assumptions\\ BR(K_sK_sK_L) < 14 \times 10^{-6} \end{array}$

The prediction** for this mode is BR~6x10⁻⁶

**Cheng,Chua,Soni; PRD72, 094003 (2005)

K⁺K⁻K⁰ CP content

•K⁺K⁻K⁰ compliments φK⁰ nicely with higher statistics...two problems
•not in a definite CP eigenstate
•tree contribution to NR component
•Fortunately, this decay is almost entirely CP-even (for K_s-mode)

BaBar:

 $N(K^{+}K^{-}K_{s})=452 \pm 28$ f_{even}=0.89 ± 0.08 ± 0.06 (moments) **Belle:** N(K^{+}K^{-}K_{s})=536 \pm 29 f_{even}=0.93±0.09±0.05 (SU2)

Excluding ϕK_s

K⁺K⁻K⁰ time-dependent results

The BaBar result includes 777 ± 80 K⁺K⁻K_L events(preliminary)

Preliminary

η'K⁰ time-dependent results

NEW for '06 BABAR

η'K⁰ SM pollution: η'π⁰,ηπ⁰,η'η

See talk by J. Smith for more details on $\eta' \pi^0$

sin2 β_{eff} from B⁰ $\rightarrow \pi^+\pi^-K_s$ final states

•quite a few CP events in this decay including $\rho^0 K_s$ and $f_0 K_s$ •also a higher (f?) resonance ~1500 MeV •there is a possible tree diagram which contaminates the sin2 β measurement •time-dep CP has been measured for $f_0 K_s$ and (now) $\rho^0 K_s$

Last summer, Belle presented a (time and tag independent) DP analysis of this mode...this approach will be important in the future! 21

NEW for '06

Preliminary

ρ**Ks: a new mode**

NEW for '06

Preliminary

ρKs results

BaBar: sin2β=0.17±0.52±0.26 C=0.64±0.41±0.25

•A large source of error comes from the possible CP-even under the rho (including interference effects)

still statistically limited

"other" modes...

....which I don't have time to go into detail about.

Mode	<sin2β<sub>eff></sin2β<sub>	Comments
$B^0 \rightarrow \pi^0 K_s$	0.31±0.26	Novel vertexing techniqueSM pollution well understood?
$B^0 \rightarrow f_0 K_s$	0.75±0.24	possible tree contribution; what's an "f ₀ "?
$B^0 \rightarrow \omega K_s$	0.63±0.30	tree contribution gives possibly large SM pollution
$B^0 \rightarrow \pi^0 \pi^0 K_s$	-0.84±0.72	Low statBaBar only

Current status

Taken on averge, there decent agreement with the SM expectation...
However, (almost) all measurements are *lower* than sin2β from J/ψK⁰
most models predict SM pollution to *increase* sin2β_{eff}

The future of $sin2\beta_{eff}$

...looks good!

The error on η'Ks alone should get down to <5%!
will remain statistics limited for foreseeable

future