Constraints on the CKM Matrix

FPCP - Vancouver - April 12th, 2006

Jérôme Charles (CPT - Marseille)
for the CKMfitter group

Eur. Phys. J. C41 (2005); http://ckmfitter.in2p3.fr

Constraints on the CKM Matrix

le Triangle d'Unítarité sous toutes les coutures
FPCP - Vancouver - April 12th, 2006
Jérôme Charles (CPT - Marseille)
for the CKMfitter group

Eur. Phys. J. C41 (2005); http://ckmfitter.in2p3.fr

The Unitarity Triangle

unitarity-exact and convention-independent version of the Wolfenstein parametrization

$$
\lambda^{2} \equiv \frac{\left|\mathrm{~V}_{\mathrm{us}}\right|^{2}}{\left|\mathrm{~V}_{\mathfrak{u d}}\right|^{2}+\left|\mathrm{V}_{\mathfrak{u s}}\right|^{2}} \quad A^{2} \lambda^{4} \equiv \frac{\left|\mathrm{~V}_{\mathrm{cb}}\right|^{2}}{\left|\mathrm{~V}_{\mathfrak{u d}}\right|^{2}+\left|\mathrm{V}_{\mathrm{us}}\right|^{2}}
$$

The Unitarity Triangle

unitarity-exact and convention-independent version of the Wolfenstein parametrization

$$
\lambda^{2} \equiv \frac{\left|\mathrm{~V}_{\mathrm{us}}\right|^{2}}{\left|\mathrm{~V}_{\mathrm{ud}}\right|^{2}+\left|\mathrm{V}_{\mathrm{us}}\right|^{2}} \quad A^{2} \lambda^{4} \equiv \frac{\left|\mathrm{~V}_{\mathrm{cb}}\right|^{2}}{\left|\mathrm{~V}_{\mathrm{ud}}\right|^{2}+\left|\mathrm{V}_{\mathrm{us}}\right|^{2}}
$$

there is no need to stop at $\mathcal{O}\left(\lambda^{4}\right)$!

$$
\bar{\rho}+i \bar{\eta} \equiv-\frac{\mathrm{V}_{\mathrm{ud}} \mathrm{~V}_{\mathrm{ub}}^{*}}{\mathrm{~V}_{\mathrm{cd}} \mathrm{~V}_{\mathrm{cb}}^{*}}
$$

$$
\begin{equation*}
\mathrm{V}_{\mathrm{cd}} \mathrm{~V}_{\mathrm{cb}}^{*} \tag{1,0}
\end{equation*}
$$

$$
(0,0)
$$

The global CKM fit

uses all constraints on which we think we have a good theoretical control

The global CKM fit

uses all constraints on which we think we have a good theoretical control
$\left|\mathrm{V}_{\mathrm{ud}}\right|,\left|\mathrm{V}_{\mathrm{us}}\right|,\left|\mathrm{V}_{\mathrm{cb}}\right|$ PDG06

The global CKM fit

uses all constraints on which we think we have a good theoretical control

note: we have splitted errors into stat. \pm theol.

The global CKM fit

uses all constraints on which we think we have a good theoretical control

note: we have splitted errors into stat. \pm theol.

The global CKM fit

uses all constraints on which we think we have a good theoretical control

note: we have splitted errors into stat. \pm theol.

More on selected inputs...

the angle α
the best constraint comes from the $\rho \rho$ modes; thanks to the BaBar update on $\rho^{+} \rho^{0}$ the data are now fully compatible with a closed isospin triangle

More on selected inputs...

the angle α
the best constraint comes from the $\rho \rho$ modes; thanks to the BaBar update on $\rho^{+} \rho^{0}$ the data are now fully compatible with a closed isospin triangle

$$
\text { new average } \alpha=\left(100.2_{-8.8}^{+15.0}\right)^{\circ}
$$

More on selected inputs...

the angle α
the best constraint comes from the $\rho \rho$ modes; thanks to the BaBar update on $\rho^{+} \rho^{0}$ the data are now fully compatible with a closed isospin triangle

$$
\text { new average } \alpha=\left(100.2_{-8.8}^{+15.0}\right)^{\circ}
$$

waiting for Belle: Dalitz $\rho \pi$, and $\rho^{0} \rho^{0}$ modes !
the angle γ (preliminary) the analysis is non trivial: naive interpretation of χ^{2} in terms of the error function underestimates the error on γ because of the bias on r_{B} due to $r_{B}>0$; both Babar and Belle use their own frequentist approach, while we use a different one meanwhile the central value of r_{B} has decreased since last summer

....more on selected inputs...

the angle γ (preliminary) the analysis is non trivial: naive interpretation of χ^{2} in terms of the error function underestimates the error on γ because of the bias on r_{B} due to $r_{B}>0$; both Babar and Belle use their own frequentist approach, while we use a different one meanwhile the central value of r_{B} has decreased since last summer
we find a somewhat looser constraint, with $\gamma=\left(62_{-25}^{+35}\right)^{\circ}$

....more on selected inputs

the oscillation frequency $\Delta \mathrm{m}_{\mathrm{s}}$
all details have been given
on Sunday (D0) and Tuesday
(CDF);

... more on selected inputs

the oscillation frequency $\Delta \mathrm{m}_{s}$ all details have been given on Sunday (DO) and Tuesday (CDF);
just look at this plot!

... more on selected inputs

the oscillation frequency $\Delta \mathrm{m}_{s}$ all details have been given on Sunday (D0) and Tuesday (CDF);
just look at this plot! however, the measured likelihood function has a complicated structure and does not contain enough information to perform a full frequentist analysis
it would be great to provide us with a Confidence Level curve, or even better, the $\operatorname{PDF}\left(\Delta \mathfrak{m}_{\text {smeas }} \mid \Delta \mathfrak{m}_{\text {strue }}\right)$

The global CKM fit: results...

EPS05
all constraints together

The global CKM fit: results...

FPCP06

without $\Delta \mathrm{m}_{\mathrm{s}}$ (CDF)
all constraints together

The global CKM fit: results!

> FPCP06
> with $\Delta \mathrm{m}_{s}(\mathrm{CDF})$
> all constraints together

Testing the CKM paradigm

CP-conserving...

...vs. CP-violating

Testing the CKM paradigm

CP-conserving...

no angles (with theory)...

...vs. CP-violating

...vs. angles (without theory)

Testing the CKM paradigm

tree...

...vs. loop

Testing the CKM paradigm

tree...
...vs. loop
the $(\bar{\rho}, \bar{\eta})$ plane is not the whole story, still the overall agreement is impressive!

Theoretical uncertainties...

all non angle measurements uncertainties are now dominated by theory; however a lot of progress in analytical calculations and lattice simulations has been made recently

using traditional approaches

using improved staggered fermions

and theoretical correlations

from Okamoto et al. (2005), splitting into stat. \pm theo.

$$
\begin{aligned}
\mathrm{f}_{\mathrm{B}_{\mathrm{d}}} & =216 \pm 22 \mathrm{MeV} \\
\mathrm{f}_{\mathrm{B}_{\mathrm{s}}} / \mathrm{f}_{\mathrm{B}_{\mathrm{d}}} & =1.20 \pm 0.03 \\
\mathrm{~B}_{\mathrm{B}_{\mathrm{d}}} & =1.257 \pm 0.095 \pm 0.021 \\
\mathrm{~B}_{\mathrm{B}_{\mathrm{s}}} & =1.313 \pm 0.093 \pm 0.014
\end{aligned}
$$

leads to $\xi=1.226 \pm 0.071 \pm 0.033$ and $f_{B_{d}} \sqrt{B_{B_{d}}}=242 \pm 26 \pm 2 \mathrm{MeV}$, while

$$
\begin{aligned}
\mathrm{f}_{\mathrm{B}_{\mathrm{d}}} & =216 \pm 22 \mathrm{GeV} \\
\mathrm{f}_{\mathrm{B}_{\mathrm{s}}} / \mathrm{f}_{\mathrm{B}_{\mathrm{d}}} & =1.20 \pm 0.03 \\
\mathrm{~B}_{\mathrm{B}_{\mathrm{s}}} & =1.313 \pm 0.093 \pm 0.014 \\
\mathrm{~B}_{\mathrm{B}_{\mathrm{s}}} / \mathrm{B}_{\mathrm{B}_{\mathrm{d}}} & =1.044 \pm 0.023 \pm 0.027
\end{aligned}
$$

leads to $\xi=1.226 \pm 0.035 \pm 0.031, \mathrm{f}_{\mathrm{B}_{\mathrm{d}}} \sqrt{\mathrm{B}_{\mathrm{B}_{\mathrm{d}}}}=242 \pm 26 \pm 9 \mathrm{MeV}$ and $B_{B_{d}}=1.258 \pm 0.094 \pm 0.045$
$|\sin (2 \beta+\gamma)|$
from $b \rightarrow c \bar{u} d, u \bar{c} d$

Selected fit predictions

the Wolfenstein parameters

$$
\begin{array}{cc}
\lambda=0.2272_{-0.0010}^{+0.0010} & A=0.809_{-0.014}^{+0.014} \\
\bar{\rho}=0.197_{-0.030}^{+0.026} & \bar{\eta}=0.339_{-0.018}^{+0.019}
\end{array}
$$

the Jarlskog invariant

$$
J=(3.05 \pm 0.18) \times 10^{-5}
$$

the UT angles

$$
\alpha=\left(97.3_{-5.0}^{+4.5}\right)^{\circ} \quad \beta=\left(22.86_{-1.00}^{+1.00}\right)^{\circ} \quad \gamma=\left(59.8_{-4.1}^{+4.9}\right)^{\circ}
$$

$\mathrm{B}_{\mathrm{s}}-\overline{\mathrm{B}}_{\mathrm{s}}$ mixing

$$
\Delta \mathrm{m}_{\mathrm{s}}=17.34_{-0.20}^{+0.49} \mathrm{ps}^{-1}
$$

B leptonic decay

$$
\mathcal{B}(B \rightarrow \tau \nu)=(9.7 \pm 1.3) \times 10^{-5}
$$

New Physics in mixing

model-independent parametrization

$$
\left\langle\mathrm{B}_{\mathrm{q}}\right| \mathcal{H}_{\Delta \mathrm{B}=2}^{\mathrm{SM}+\mathrm{NP}}\left|\overline{\mathrm{~B}}_{\mathrm{q}}\right\rangle \equiv\left\langle\mathrm{B}_{\mathrm{q}}\right| \mathcal{H}_{\Delta \mathrm{B}=2}^{\mathrm{SM}}\left|\overline{\mathrm{~B}}_{\mathrm{q}}\right\rangle \times\left(1+\mathrm{h}_{\mathrm{q}} \mathrm{e}^{2 i \sigma_{\mathrm{q}}}\right)
$$

assuming $\Delta \mathrm{m}_{s}=20.000 \pm 0.011 \mathrm{ps}^{-1}$ and $\sin 2 \beta_{s}=0.036 \pm 0.028$ (one year LHCb running)

Constraint on supersymmetric charged Higgs

from $B \rightarrow \tau v$

The Unitarity Triangle from flavor SU(3)

JC, A. Höcker, J. Malclès, J. Ocariz, to appear

```
most of SU(3)-based analyses of
charmless B }->\pi\pi,\textrm{K}\pi,\textrm{K}\overline{\textrm{K}
decays neglect annihila-
tion/exchange topologies
```


The Unitarity Triangle from flavor SU(3)

JC, A. Höcker, J. Malclès, J. Ocariz, to appear
most of $\mathrm{SU}(3)$-based analyses of charmless $\mathrm{B} \rightarrow \pi \pi, \mathrm{K} \pi, \mathrm{K} \overline{\mathrm{K}}$ decays neglect annihilation/exchange topologies
this assumption is not mandatory ! " α " from
$\mathrm{B} \rightarrow \pi^{+} \pi^{-}, \mathrm{K}^{+} \pi^{-}, \mathrm{K}^{+} \mathrm{K}^{-}$

The Unitarity Triangle from flavor SU(3)

JC, A. Höcker, J. Malclès, J. Ocariz, to appear
most of $\mathrm{SU}(3)$-based analyses of charmless $\mathrm{B} \rightarrow \pi \pi, \mathrm{K} \pi, \mathrm{K} \overline{\mathrm{K}}$
decays neglect annihilation/exchange topologies
this assumption is not necessary ! " β " from
$\mathrm{B} \rightarrow \mathrm{K}_{\mathrm{s}} \pi^{0}, \pi^{0} \pi^{0}, \mathrm{~K}^{+} \mathrm{K}^{-}$

using all $\mathrm{B} \rightarrow \mathrm{PP}$ observables (today)

using all $\mathrm{B} \rightarrow$ PP observables (today \rightarrow tomorrow)

Depuzzling $B \rightarrow K \pi$

using $(\bar{\rho}, \bar{\eta})_{s M}$ and all $B \rightarrow P P$ observables, except $B R\left(B \rightarrow K^{+} \pi^{-}\right), B R\left(B \rightarrow K^{0} \pi^{0}\right)$ and $S\left(K_{s} \pi^{0}\right)$

$$
R_{n}=B R\left(K^{+} \pi^{-}\right) /\left(2 B R\left(K^{0} \pi^{0}\right)\right)
$$

Depuzzling $B \rightarrow K \pi$

using $(\bar{\rho}, \bar{\eta})_{s M}$ and all $B \rightarrow P P$ observables, except $B R\left(B \rightarrow K^{+} \pi^{-}\right), B R\left(B \rightarrow K^{0} \pi^{0}\right)$ and $S\left(K_{s} \pi^{0}\right)$

Conclusion

congratulations to

Conclusion

congratulations to
BaBar ?...

Conclusion

congratulations to
BaBar ?...
Belle ?...

Conclusion

congratulations to
BaBar ?...
Belle ?...
D0 ?...

Conclusion

congratulations to

> BaBar ?...
> Belle ?...
> D0 ?...
> CDF ?...

Conclusion

congratulations to
BaBar ?...
Belle ?... D0 ?...

CDF ?...
...to Standard Model of course

backup

The CKM movie

The CKM movie

The CKM movie

The CKM movie

The CKM movie

The statistical method to extract γ

the observables depend on γ and μ where $\mu=\left(\mathrm{r}_{\mathrm{B}}, \delta\right)$

1. minimize $\chi^{2}(\gamma, \mu)$ with respect to μ and substract the minimum $\rightarrow \Delta \chi^{2}(\gamma)$
2. assume that the true value of μ is $\mu_{t} \rightarrow \operatorname{PDF}\left[\Delta \chi^{2}(\gamma) \mid \gamma, \mu_{t}\right]$
3. compute $(1-C L)_{\mu_{t}}(\gamma)$ via toy Monte-Carlo
4. maximize with respect to $\mu_{\mathrm{t}} \rightarrow(1-\mathrm{CL})(\gamma)$
this is a quite general, but very expensive, procedure; coverage must be checked
before we assumed that μ_{t} was given by the value that minimizes $\chi^{2}(\gamma, \mu)$ on the real data: studies have shown us that this can lead to an underestimate of the error
