Constraints on the CKM Matrix

FPCP - Vancouver - April 12th, 2006

Jérôme Charles (CPT - Marseille)

for the CKMfitter group

Eur. Phys. J. C41 (2005); http://ckmfitter.in2p3.fr

Constraints on the CKM Matrix

le Triangle d'Unitarité sous toutes les coutures

FPCP - Vancouver - April 12th, 2006

Jérôme Charles (CPT - Marseille)

for the CKMfitter group

Eur. Phys. J. C41 (2005); http://ckmfitter.in2p3.fr

The Unitarity Triangle

unitarity-exact and convention-independent version of the Wolfenstein parametrization

$$\lambda^{2} \equiv \frac{|V_{us}|^{2}}{|V_{ud}|^{2} + |V_{us}|^{2}} \qquad A^{2}\lambda^{4} \equiv \frac{|V_{cb}|^{2}}{|V_{ud}|^{2} + |V_{us}|^{2}}$$

The Unitarity Triangle

unitarity-exact and convention-independent version of the Wolfenstein parametrization

$$\lambda^{2} \equiv \frac{|V_{us}|^{2}}{|V_{ud}|^{2} + |V_{us}|^{2}} \qquad A^{2}\lambda^{4} \equiv \frac{|V_{cb}|^{2}}{|V_{ud}|^{2} + |V_{us}|^{2}}$$
there is no need to stop at $\mathcal{O}(\lambda^{4})$!
$$\bar{\rho} + i\bar{\eta} \equiv -\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}} \qquad (\bar{\rho}, \bar{\eta})$$

$$V_{ud}V_{ub}^{*} \qquad (\bar{\rho}, \bar{\eta})$$

$$\chi_{ud}V_{cb}^{*} \qquad (0, 0) \qquad (1, 0)$$

uses all constraints on which we think we have a good theoretical control

uses all constraints on which we think we have a good theoretical control

 $|V_{ud}|, |V_{us}|, |V_{cb}|$ PDG06

uses all constraints on which we think we have a good theoretical control

$ V_{ud} , V_{us} , V_{cb} $ PDG06				
E	<	exp: KTeV/KLOE, theo: CKM05	$B_{K} = 0.79 \pm 0.04 \pm 0.09$	
$ \lambda$	ub	PDG06	excl. $(3.94 \pm 0.28 \pm 0.51) \times 10^{-3}$	
			incl. (4.45 \pm 0.23 \pm 0.39) \times 10^{-3}	
Δ	m _d	exp: last WA, theo: CKM05	$\xi = 1.24 \pm 0.04 \pm 0.06$	
Δ	ms	exp: you guess, theo: CKM05	$f_{B_{B_s}}\sqrt{B_s} = 271 \pm 38 \text{ GeV}$	

note: we have splitted errors into stat. \pm theo.

uses all constraints on which we think we have a good theoretical control

$ V_{ud} , V_{us} , V_{cb} $ PDG06				
ε _K	exp: KTeV/KLOE, theo: CKM05	$B_{K} = 0.79 \pm 0.04 \pm 0.09$		
$ V_{ub} $	PDG06	excl. $(3.94 \pm 0.28 \pm 0.51) \times 10^{-3}$		
		incl. (4.45 \pm 0.23 \pm 0.39) \times 10^{-3}		
Δm_d	exp: last WA, theo: CKM05	$\xi = 1.24 \pm 0.04 \pm 0.06$		
Δm_s	exp: you guess, theo: CKM05	$f_{B_{B_s}}\sqrt{B_s} = 271 \pm 38 \text{ GeV}$		
β last WA				
α ex	α exp: last WA, theo: $\pi\pi$, $\rho\pi$, $\rho\rho$ and SU(2)			
γ ex	exp: last WA, theo: GLW/ADS/GGSZ			

note: we have splitted errors into stat. \pm theo.

uses all constraints on which we think we have a good theoretical control

$ V_{ud} , V_{us} , V_{cb} $ PDG06				
ε _K	exp: KTeV/KLOE, theo: CKM05	$B_{K} = 0.79 \pm 0.04 \pm 0.09$		
$ V_{ub} $	PDG06	excl. $(3.94 \pm 0.28 \pm 0.51) \times 10^{-3}$		
		incl. (4.45 \pm 0.23 \pm 0.39) \times 10^{-3}		
Δm_d	exp: last WA, theo: CKM05	$\xi = 1.24 \pm 0.04 \pm 0.06$		
Δm_s	exp: you guess, theo: CKM05	$f_{B_{B_s}}\sqrt{B_s} = 271 \pm 38 \text{ GeV}$		
β last WA				
α exp: last WA, theo: $\pi\pi$, $\rho\pi$, $\rho\rho$ and SU(2)				
γ exp: last WA, theo: GLW/ADS/GGSZ				
$B ightarrow au v$ exp: last WA, theo: CKM03-05 $f_{B_d} = 190 \pm 25 \pm 9$ MeV				

note: we have splitted errors into stat. \pm theo.

More on selected inputs...

the angle $\boldsymbol{\alpha}$

the best constraint comes from the $\rho\rho$ modes; thanks to the BaBar update on $\rho^+\rho^0$ the data are now fully compatible with a closed isospin triangle

More on selected inputs...

the angle $\boldsymbol{\alpha}$

the best constraint comes from the $\rho\rho$ modes; thanks to the BaBar update on $\rho^+\rho^0$ the data are now fully compatible with a closed isospin triangle

More on selected inputs...

the angle $\boldsymbol{\alpha}$

the best constraint comes from the $\rho\rho$ modes; thanks to the BaBar update on $\rho^+\rho^0$ the data are now fully compatible with a closed isospin triangle

waiting for Belle: Dalitz $\rho\pi$, and $\rho^0\rho^0$ modes !

... more on selected inputs...

the angle γ (preliminary) the analysis is non trivial: naive interpretation of χ^2 in terms of the error function underestimates the error on γ because of the bias on $r_{\rm B}$ due to $r_B > 0$; both Babar and Belle use their own frequentist approach, while we use a different one meanwhile the central value of $r_{\rm B}$ has decreased since last summer

... more on selected inputs...

the angle γ (preliminary) the analysis is non trivial: naive interpretation of χ^2 in terms of the error function underestimates the error on γ because of the bias on $r_{\rm B}$ due to $r_B > 0$; both Babar and Belle use their own frequentist approach, while we use a different one meanwhile the central value of $r_{\rm B}$ has decreased since last summer

we find a somewhat looser constraint, with $\gamma = (62^{+35}_{-25})^{\circ}$

... more on selected inputs

- the oscillation frequency Δm_s
- all details have been given on Sunday (D0) and Tuesday (CDF);

... more on selected inputs

- the oscillation frequency Δm_s
- all details have been given on Sunday (D0) and Tuesday (CDF);
- just look at this plot !

... more on selected inputs

the oscillation frequency Δm_s

all details have been given on Sunday (D0) and Tuesday (CDF);

just look at this plot !

however, the measured likelihood function has a complicated structure and does not contain enough information to perform a full frequentist analysis

it would be great to provide us with a Confidence Level curve, or even better, the $PDF(\Delta m_{smeas} | \Delta m_{strue})$

The global CKM fit: results...

EPS05 all constraints together

The global CKM fit: results...

FPCP06 without Δm_s (CDF) all constraints together

The global CKM fit: results!

FPCP06 with Δm_s (CDF) all constraints together

CP-conserving...

...vs. CP-violating

CP-conserving...

no angles (with theory)...

... vs. CP-violating

...vs. angles (without theory)

tree...

...vs. loop

tree...

the $(\bar{\rho}, \bar{\eta})$ plane is not the whole story, still the overall agreement is impressive !

Theoretical uncertainties...

all non angle measurements uncertainties are now dominated by theory; however a lot of progress in analytical calculations and lattice simulations has been made recently

excluded area has CL > 0.95 improved staggered fermions Δm_d $-B^+ \rightarrow \tau^+ \nu$ 0.5 3 ſ -0.5 -1 Constraint from $B^+ \rightarrow \tau^+ v_{\tau}$ and Δm_d -1.5 0.5 -0.5 0 1.5 2 1 ρ

using improved staggered fermions

using traditional approaches

and theoretical correlations

from Okamoto et al. (2005), splitting into stat. \pm theo.

$$\begin{array}{rcl} f_{B_d} &=& 216 \pm 22 \ \text{MeV} \\ f_{B_s}/f_{B_d} &=& 1.20 \pm 0.03 \\ & B_{B_d} &=& 1.257 \pm 0.095 \pm 0.021 \\ & B_{B_s} &=& 1.313 \pm 0.093 \pm 0.014 \end{array}$$

leads to $\xi = 1.226 \pm 0.071 \pm 0.033$ and $f_{B_{\,d}} \sqrt{B_{B_{\,d}}} = 242 \pm 26 \pm 2$ MeV, while

$$f_{B_{d}} = 216 \pm 22 \text{ GeV}$$

$$f_{B_{s}}/f_{B_{d}} = 1.20 \pm 0.03$$

$$B_{B_{s}} = 1.313 \pm 0.093 \pm 0.014$$

$$B_{B_{s}}/B_{B_{d}} = 1.044 \pm 0.023 \pm 0.027$$

leads to $\xi=1.226\pm0.035\pm0.031$, $f_{B_d}\sqrt{B_{B_d}}=242\pm26\pm9$ MeV and $B_{B_d}=1.258\pm0.094\pm0.045$

 $|\sin(2\beta + \gamma)|$

from $b \rightarrow c\bar{u}d$, $u\bar{c}d$

Selected fit predictions

the Wolfenstein parameters

$$\begin{split} \lambda &= 0.2272^{+0.0010}_{-0.0010} \quad A = 0.809^{+0.014}_{-0.014} \\ \bar{\rho} &= 0.197^{+0.026}_{-0.030} \quad \bar{\eta} = 0.339^{+0.019}_{-0.018} \end{split}$$

the Jarlskog invariant

$$J = (3.05 \pm 0.18) \times 10^{-5}$$

the UT angles

$$\alpha = (97.3^{+4.5}_{-5.0})^{\circ} \quad \beta = (22.86^{+1.00}_{-1.00})^{\circ} \quad \gamma = (59.8^{+4.9}_{-4.1})^{\circ}$$

 $B_s - \bar{B}_s$ mixing

$$\Delta m_{\rm s} = 17.34^{+0.49}_{-0.20} \, \rm ps^{-1}$$

B leptonic decay

$$\mathcal{B}(\mathrm{B} \to \tau \mathrm{v}) = (9.7 \pm 1.3) \times 10^{-5}$$

New Physics in mixing

model-independent parametrization

$$\left\langle \mathbf{B}_{\mathbf{q}} \left| \mathcal{H}_{\Delta B=2}^{\mathsf{SM}+\mathsf{NP}} \left| \bar{\mathbf{B}}_{\mathbf{q}} \right\rangle \equiv \left\langle \mathbf{B}_{\mathbf{q}} \right| \mathcal{H}_{\Delta B=2}^{\mathsf{SM}} \left| \bar{\mathbf{B}}_{\mathbf{q}} \right\rangle \times (1 + \mathbf{h}_{\mathbf{q}} e^{2i\sigma_{\mathbf{q}}}) \right\rangle$$

assuming $\Delta m_s = 20.000 \pm 0.011 \text{ ps}^{-1}$ and $\sin 2\beta_s = 0.036 \pm 0.028$ (one year LHCb running)

17

Constraint on supersymmetric charged Higgs

from $B\to\tau\nu$

The Unitarity Triangle from flavor SU(3)

JC, A. Höcker, J. Malclès, J. Ocariz, to appear

```
most of SU(3)-based analyses of
charmless B \rightarrow \pi\pi, K\pi, K\bar{K}
decays neglect annihila-
tion/exchange topologies
```

The Unitarity Triangle from flavor SU(3)

JC, A. Höcker, J. Malclès, J. Ocariz, to appear

The Unitarity Triangle from flavor SU(3)

JC, A. Höcker, J. Malclès, J. Ocariz, to appear

using all $B \rightarrow PP$ observables (today)

using all $B \rightarrow PP$ observables (today \rightarrow tomorrow)

Depuzzling $B \to K\pi$

using $(\bar{\rho}, \bar{\eta})_{SM}$ and all $B \to PP$ observables, except $BR(B \to K^+\pi^-)$, $BR(B \to K^0\pi^0)$ and $S(K_S\pi^0)$

Depuzzling $B \to K\pi$

using $(\bar{\rho}, \bar{\eta})_{SM}$ and all $B \to PP$ observables, except $BR(B \to K^+\pi^-)$, $BR(B \to K^0\pi^0)$ and $S(K_S\pi^0)$

congratulations to

congratulations to

BaBar ?...

congratulations to

BaBar ?... Belle ?...

congratulations to

BaBar ?... Belle ?... D0 ?...

congratulations to

BaBar ?... Belle ?... D0 ?... CDF ?...

congratulations to

BaBar ?...

Belle ?...

D0 ?...

CDF ?...

... to Standard Model of course

backup

The statistical method to extract γ

the observables depend on γ and μ where $\mu = (r_B, \delta)$

- 1. minimize $\chi^2(\gamma,\mu)$ with respect to μ and substract the minimum $\rightarrow \Delta \chi^2(\gamma)$
- 2. assume that the true value of μ is $\mu_t \to \mathsf{PDF}[\Delta \chi^2(\gamma) \,|\, \gamma, \mu_t]$
- 3. compute $(1 CL)_{\mu_t}(\gamma)$ via toy Monte-Carlo
- 4. maximize with respect to $\mu_t \to (1-CL)(\gamma)$

this is a quite general, but very expensive, procedure; coverage must be checked

before we assumed that μ_t was given by the value that minimizes $\chi^2(\gamma, \mu)$ on the real data: studies have shown us that this can lead to an underestimate of the error